山西省长治市市级名校2021-2022学年中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.关于的方程有实数根,则满足( )
A. B.且 C.且 D.
2.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的
A. B. C. D.
3.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.右转80° B.左转80° C.右转100° D.左转100°
4.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为( )
A.a≥ B.a> C.a≤ D.a>
5.如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )
A. B. C. D.
6.|–|的倒数是( )
A.–2 B.– C. D.2
7.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( )
A.30° B.35° C.40° D.45°
8.方程的解是
A.3 B.2 C.1 D.0
9.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
10.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )
A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)
12.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是______.
13.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.
14.计算:×(﹣2)=___________.
15.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.
16.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____
17.已知是整数,则正整数n的最小值为___
三、解答题(共7小题,满分69分)
18.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.
(1)当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
19.(5分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.
求证:OC=OD.
20.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.
21.(10分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.
22.(10分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
23.(12分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣1
24.(14分)列方程解应用题
八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
【详解】
当a=5时,原方程变形为-4x-1=0,解得x=-;
当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
所以a的取值范围为a≥1.
故选A.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
2、D
【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
3、A
【解析】
60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.
故选A.
4、B
【解析】
方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.
【详解】
①+②得:
解得:
故选:B.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知
数的值.
5、B
【解析】
先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.
【详解】
∵BD平分∠ABC,
∴∠ABD=∠EBD,
∵AE⊥BD,
∴∠ADB=∠EDB=90°,
又∵BD=BD,
∴△ABD≌△EBD,
∴AD=ED,
∵,的面积为1,
∴S△AEC=S△ABC=,
又∵AD=ED,
∴S△CDE= S△AEC=,
故选B.
【点睛】
本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.
6、D
【解析】
根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.
【详解】
|−|=,的倒数是2;
∴|−|的倒数是2,
故选D.
【点睛】
本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.
7、B
【解析】
分析:根据平行线的性质和三角形的外角性质解答即可.
详解:如图,
∵AB∥CD,∠1=45°,
∴∠4=∠1=45°,
∵∠3=80°,
∴∠2=∠3-∠4=80°-45°=35°,
故选B.
点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.
8、A
【解析】
试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,
经检验x=3是分式方程的解.故选A.
9、A
【解析】
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
【详解】
A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
D、是随机事件,选项错误.
故选A.
10、C
【解析】
本题根据科学记数法进行计算.
【详解】
因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,
故选C.
【点睛】
本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、5π
【解析】
根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.
【详解】
∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.
故答案为:5π.
【点睛】
本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.
12、
【解析】
如图,分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D.
∵△ABC为等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,
∴∠CAE=∠BCF,∠ACE=∠CBF.
∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,
∴tanα=tan∠BAD==.
点睛:分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D,可根据ASA证明△ACE≌△CBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;
13、2
【解析】
只要证明△PBC是等腰直角三角形即可解决问题.
【详解】
解:∵∠APO=∠BPO=30°,
∴∠APB=60°,
∵PA=PC=PB,∠APC=30°,
∴∠BPC=90°,
∴△PBC是等腰直角三角形,
∵OA=1,∠APO=30°,
∴PA=2OA=2,
∴BC=PC=2,
故答案为2.
【点睛】
本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
14、-1
【解析】
根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
【详解】
故答案为
【点睛】
本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.
15、
【解析】
根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.
【详解】
设大和尚x人,小和尚y人,由题意可得
.
故答案为.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.
16、.
【解析】
解:令AE=4x,BE=3x,
∴AB=7x.
∵四边形ABCD为平行四边形,
∴CD=AB=7x,CD∥AB,
∴△BEF∽△DCF.
∴,
∴DF=
【点睛】
本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
17、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
【点睛】
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
三、解答题(共7小题,满分69分)
18、(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.
【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),进而得出A(1-t,+t),即:(1-t)(+t)=m,即可得出点D(1,8-),即可得出结论.
详解:(1)①如图1,
∵m=1,
∴反比例函数为y=,当x=1时,y=1,
∴B(1,1),
当y=2时,
∴2=,
∴x=2,
∴A(2,2),
设直线AB的解析式为y=kx+b,
∴,
∴,
∴直线AB的解析式为y=-x+3;
②四边形ABCD是菱形,
理由如下:如图2,
由①知,B(1,1),
∵BD∥y轴,
∴D(1,5),
∵点P是线段BD的中点,
∴P(1,3),
当y=3时,由y=得,x=,
由y=得,x=,
∴PA=1-=,PC=-1=,
∴PA=PC,
∵PB=PD,
∴四边形ABCD为平行四边形,
∵BD⊥AC,
∴四边形ABCD是菱形;
(2)四边形ABCD能是正方形,
理由:当四边形ABCD是正方形,
∴PA=PB=PC=PD,(设为t,t≠0),
当x=1时,y==,
∴B(1,),
∴A(1-t,+t),
∴(1-t)(+t)=m,
∴t=1-,
∴点D的纵坐标为+2t=+2(1-)=8-,
∴D(1,8-),
∴1(8-)=n,
∴m+n=2.
点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
19、证明见解析.
【解析】
试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.
试题解析:证明:∵AB∥CD
∴∠A=∠D ∠B=∠C
∵OA=OB
∴∠A=∠B
∴∠C=∠D
∴OC=OD
考点:等腰三角形的性质与判定,平行线的性质
20、 (1)m≥﹣;(2)m的值为2.
【解析】
(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;
(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.
【详解】
(1)由题意知,(2m+2)2﹣4×1×m2≥1,
解得:m≥﹣;
(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,
∵α+β+αβ=1,
∴﹣(2m+2)+m2=1,
解得:m1=﹣1,m1=2,
由(1)知m≥﹣,
所以m1=﹣1应舍去,
m的值为2.
【点睛】
本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.
21、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
【解析】
(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;
(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.
【详解】
解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,
∴h=1,
把原点坐标代入y=(x﹣1)2+k,得,
(2﹣1)2+k=2,
解得k=﹣1;
(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,
∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,
∴k≤2.
当x=﹣1时,y=4+k;当x=2时,y=1+k,
∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,
∴4+k>2且1+k<2,解得﹣4<k<﹣1,
综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
【点睛】
抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.
22、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【解析】
(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
【详解】
(1)设购进甲种商品x件,购进乙商品y件,
根据题意得:
,
解得:,
答:商店购进甲种商品40件,购进乙种商品60件;
(2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
根据题意列得:
,
解得:20≤a≤22,
∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【点睛】
此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
23、1
【解析】
根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.
【详解】
原式=1×+3﹣+1﹣1=1.
【点睛】
此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
24、15
【解析】
试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.
试题解析:
解:设骑车学生的速度为,由题意得
,
解得 .
经检验是原方程的解.
答: 骑车学生的速度为15.
2022年甘肃省酒泉市市级名校中考试题猜想数学试卷含解析: 这是一份2022年甘肃省酒泉市市级名校中考试题猜想数学试卷含解析,共20页。试卷主要包含了是两个连续整数,若,则分别是.,若2<<3,则a的值可以是等内容,欢迎下载使用。
2021-2022学年江苏省邗江区市级名校中考试题猜想数学试卷含解析: 这是一份2021-2022学年江苏省邗江区市级名校中考试题猜想数学试卷含解析,共23页。试卷主要包含了下面计算中,正确的是,在平面直角坐标系内,点P等内容,欢迎下载使用。
青海省西宁市市级名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份青海省西宁市市级名校2021-2022学年中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。