|试卷下载
搜索
    上传资料 赚现金
    2022年山东省高密市市级名校中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    2022年山东省高密市市级名校中考试题猜想数学试卷含解析01
    2022年山东省高密市市级名校中考试题猜想数学试卷含解析02
    2022年山东省高密市市级名校中考试题猜想数学试卷含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省高密市市级名校中考试题猜想数学试卷含解析

    展开
    这是一份2022年山东省高密市市级名校中考试题猜想数学试卷含解析,共28页。试卷主要包含了答题时请按要求用笔,下列事件中,属于必然事件的是,若,代数式的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    2.如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )
    甲:①作的角平分线;②以为圆心,长为半径画弧,交于点,点即为所求;
    乙:①过点作平行于的直线;②过点作平行于的直线,交于点,点即为所求.

    A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确
    3.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
    A.-6 B.-5 C.-6或-5 D.6或5
    4.的算术平方根是(  )
    A.4 B.±4 C.2 D.±2
    5.下列说法中,正确的是( )
    A.两个全等三角形,一定是轴对称的
    B.两个轴对称的三角形,一定是全等的
    C.三角形的一条中线把三角形分成以中线为轴对称的两个图形
    D.三角形的一条高把三角形分成以高线为轴对称的两个图形
    6.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )

    A.20 B.15 C.10 D.5
    8.下列事件中,属于必然事件的是( )
    A.三角形的外心到三边的距离相等
    B.某射击运动员射击一次,命中靶心
    C.任意画一个三角形,其内角和是 180°
    D.抛一枚硬币,落地后正面朝上
    9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
    A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
    10.若,代数式的值是  
    A.0 B. C.2 D.
    11.下列算式中,结果等于x6的是(  )
    A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
    12.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是(  )

    A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.

    14.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).
    15.若关于x的方程=0有增根,则m的值是______.
    16.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
    用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.

    17.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.

    18.函数y=+的自变量x的取值范围是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.
    求:△ABD的面积.

    20.(6分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点” .乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.

    21.(6分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
    (1)点C坐标为 ;
    (2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
    (3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
    (4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.

    22.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
    (Ⅰ)求发射台与雷达站之间的距离;
    (Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?

    23.(8分)(问题情境)
    张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

    小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
    [变式探究]
    如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
    请运用上述解答中所积累的经验和方法完成下列两题:
    [结论运用]
    如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
    [迁移拓展]
    图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
    24.(10分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
    小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
    (1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
    x
    0
    1
    2
    3
    4
    5
    6
    y
    5.2

    4.2
    4.6
    5.9
    7.6
    9.5
    说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
    (2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.

    25.(10分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.
    (1)求证:PC是⊙O的切线;
    (2)若∠ABC=60°,AB=10,求线段CF的长.

    26.(12分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点 E.
    (1)求抛物线的解析式;
    (2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.
    (3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.

    27.(12分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
    (1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
    (2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
    【详解】
    解:解第一个不等式得:x>-1;
    解第二个不等式得:x≤1,
    在数轴上表示,
    故选B.
    【点睛】
    此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
    2、A
    【解析】
    根据题意先画出相应的图形,然后进行推理论证即可得出结论.
    【详解】
    甲的作法如图一:

    ∵为等边三角形,AD是的角平分线




    由甲的作法可知,

    在和中,

    故甲的作法正确;
    乙的作法如图二:



    在和中,

    故乙的作法正确;
    故选:A.
    【点睛】
    本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
    3、A
    【解析】
    试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
    ∴x1+x2=2,x1∙x2=-1
    ∴=.
    故选A.
    4、C
    【解析】
    先求出的值,然后再利用算术平方根定义计算即可得到结果.
    【详解】
    =4,
    4的算术平方根是2,
    所以的算术平方根是2,
    故选C.
    【点睛】
    本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.
    5、B
    【解析】根据轴对称图形的概念对各选项分析判断即可得解.
    解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;
    B. 两个轴对称的三角形,一定全等,正确;
    C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;
    D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.
    故选B.
    6、D
    【解析】
    先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
    【详解】
    ∵点A(a,-b)在第一象限内,
    ∴a>0,-b>0,
    ∴b<0,
    ∴点B((a,b)在第四象限,
    故选D.
    【点睛】
    本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
    7、B
    【解析】
    ∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
    ∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
    8、C
    【解析】
    分析:必然事件就是一定发生的事件,依据定义即可作出判断.
    详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
    B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
    C、三角形的内角和是180°,是必然事件,故本选项符合题意;
    D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
    故选C.
    点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    9、D
    【解析】
    试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
    解:2012年的产量为100(1+x),
    2013年的产量为100(1+x)(1+x)=100(1+x)2,
    即所列的方程为100(1+x)2=144,
    故选D.
    点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
    10、D
    【解析】
    由可得,整体代入到原式即可得出答案.
    【详解】
    解:,

    则原式.
    故选:D.
    【点睛】
    本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
    11、A
    【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
    B、x2+x2+x2=3x2,故选项B不符合题意;
    C、x2•x3=x5,故选项C不符合题意;
    D、x4+x2,无法计算,故选项D不符合题意.
    故选A.
    12、B
    【解析】
    由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
    【详解】
    四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,
    A、∵AE=CF,
    ∴DE=BF,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF;
    B、∵BE=DF,
    四边形BFDE是等腰梯形,
    本选项不一定能判定BE//DF;
    C、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠EBF=∠FDE,
    ∴∠BED=∠BFD,
    四边形BFDE是平行四边形,
    ∴BE//DF,
    故本选项能判定BE//DF;
    D、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠BED=∠BFD,
    ∴∠EBF=∠FDE,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF.
    故选B.
    【点睛】
    本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、π
    【解析】
    取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
    【详解】
    解:如图,取的中点,取的中点,连接,,,

    ∵在等腰中,,点在以斜边为直径的半圆上,
    ∴,
    ∵为的中位线,
    ∴,
    ∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
    ∴弧长,
    故答案为:.
    【点睛】
    本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
    14、15π
    【解析】
    根据圆的面积公式、扇形的面积公式计算即可.
    【详解】
    圆锥的母线长==5,,
    圆锥底面圆的面积=9π
    圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,
    ∴圆锥的侧面展开图的面积=×6π×5=15π,
    【点睛】
    本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.
    15、2
    【解析】
    去分母得,m-1-x=0.
    ∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.
    16、
    【解析】
    分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
    详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
    ∵∠C+∠KDC=90°,∴∠C=∠HDA.
    ∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
    ∴CK:KD=HD:HA,∴CK:100=100:15,
    解得:CK=.
    故答案为:.
    点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.
    17、1
    【解析】
    先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
    【详解】
    解:∵BD=CD,
    ∴,
    ∴OD⊥BC,
    ∴BE=CE,
    而OA=OB,
    ∴OE为△ABC的中位线,
    ∴,
    ∴DE=OD-OE=5-3=1.
    故答案为1.

    【点睛】
    此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
    18、x≥1且x≠3
    【解析】
    根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.
    【详解】
    根据二次根式和分式有意义的条件可得:

    解得:且
    故答案为:且
    【点睛】
    考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、2.
    【解析】
    试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.
    解:在△ADC中,AD=15,AC=12,DC=9,
    AC2+DC2=122+92=152=AD2,
    即AC2+DC2=AD2,
    ∴△ADC是直角三角形,∠C=90°,
    在Rt△ABC中,BC===16,
    ∴BD=BC﹣DC=16﹣9=7,
    ∴△ABD的面积=×7×12=2.
    20、①结论一正确,理由见解析;②结论二正确,S四QEFP= S
    【解析】
    试题分析:
    (1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;
    (2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP= S△AEF- S△AQP=S,从而说明乙的结论②正确;
    试题解析:
    甲和乙的结论都成立,理由如下:
    (1)∵在平行四边形ABCD中,AD∥BC,
    ∴△BEQ∽△DAQ,
    又∵点P、Q是线段BD的三等分点,
    ∴BE:AD=BQ:DQ=1:2,
    ∵AD=BC,
    ∴BE:BC=1:2,
    ∴点E是BC的中点,即结论①正确;
    (2)和(1)同理可得点F是CD的中点,
    ∴EF∥BD,EF=BD,
    ∴△CEF∽△CBD,
    ∴S△CEF=S△CBD=S平行四边形ABCD=S,
    ∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,
    ∴S△AEF=S四边形AECF-S△CEF=S,
    ∵EF∥BD,
    ∴△AQP∽△AEF,
    又∵EF=BD,PQ=BD,
    ∴QP:EF=2:3,
    ∴S△AQP=S△AEF=,
    ∴S四边形QEFP= S△AEF- S△AQP=S-=S,即结论②正确.
    综上所述,甲、乙两位同学的结论都正确.
    21、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
    【解析】
    (1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
    (2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
    (3)将点N的坐标代入y=x2,看是否符合解析式即可;
    (4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
    【详解】
    (1)∵A(2,2),B(3,2),D(2,3),
    ∴AD=BC=1, 则点 C(3,3),
    故答案为:(3,3);
    (2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:

    解得:,
    ∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
    ∴顶点 N 坐标为(,);
    (3)由(2)把 x=代入 y=x2=()2= ,
    ∴抛物线的顶点在函数 y=x2的图象上运动;
    (4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
    解得: 【点睛】
    本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.
    22、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
    【解析】
    (Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
    【详解】
    (Ⅰ)在中,,≈0.74,
    ∴.
    答:发射台与雷达站之间的距离约为.
    (Ⅱ)在中,,
    ∴.
    ∵在中,,
    ∴.
    ∴.
    答:这枚火箭从到的平均速度大约是.
    【点睛】
    本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
    23、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
    【解析】
    小军的证明:连接AP,利用面积法即可证得;
    小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
    [变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
    小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
    [结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
    [迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
    【详解】
    小军的证明:
    连接AP,如图②

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP+S△ACP,
    ∴AB×CF=AB×PD+AC×PE,
    ∵AB=AC,
    ∴CF=PD+PE.
    小俊的证明:
    过点P作PG⊥CF,如图2,
    ∵PD⊥AB,CF⊥AB,PG⊥FC,
    ∴∠CFD=∠FDG=∠FGP=90°,
    ∴四边形PDFG为矩形,
    ∴DP=FG,∠DPG=90°,
    ∴∠CGP=90°,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠PGC=∠CEP,
    ∵∠BDP=∠DPG=90°,
    ∴PG∥AB,
    ∴∠GPC=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∴∠GPC=∠ECP,
    在△PGC和△CEP中

    ∴△PGC≌△CEP,
    ∴CG=PE,
    ∴CF=CG+FG=PE+PD;
    [变式探究]
    小军的证明思路:连接AP,如图③,

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP﹣S△ACP,
    ∴AB×CF=AB×PD﹣AC×PE,
    ∵AB=AC,
    ∴CF=PD﹣PE;
    小俊的证明思路:
    过点C,作CG⊥DP,如图③,
    ∵PD⊥AB,CF⊥AB,CG⊥DP,
    ∴∠CFD=∠FDG=∠DGC=90°,
    ∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠CGP=∠CEP,
    ∵CG⊥DP,AB⊥DP,
    ∴∠CGP=∠BDP=90°,
    ∴CG∥AB,
    ∴∠GCP=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵∠ACB=∠PCE,
    ∴∠GCP=∠ECP,
    在△CGP和△CEP中,

    ∴△CGP≌△CEP,
    ∴PG=PE,
    ∴CF=DG=DP﹣PG=DP﹣PE.
    [结论运用]
    如图④

    过点E作EQ⊥BC,
    ∵四边形ABCD是矩形,
    ∴AD=BC,∠C=∠ADC=90°,
    ∵AD=8,CF=3,
    ∴BF=BC﹣CF=AD﹣CF=5,
    由折叠得DF=BF,∠BEF=∠DEF,
    ∴DF=5,
    ∵∠C=90°,
    ∴DC==1,
    ∵EQ⊥BC,∠C=∠ADC=90°,
    ∴∠EQC=90°=∠C=∠ADC,
    ∴四边形EQCD是矩形,
    ∴EQ=DC=1,
    ∵AD∥BC,
    ∴∠DEF=∠EFB,
    ∵∠BEF=∠DEF,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    由问题情景中的结论可得:PG+PH=EQ,
    ∴PG+PH=1.
    ∴PG+PH的值为1.
    [迁移拓展]
    延长AD,BC交于点F,作BH⊥AF,如图⑤,

    ∵AD×CE=DE×BC,
    ∴,
    ∵ED⊥AD,EC⊥CB,
    ∴∠ADE=∠BCE=90°,
    ∴△ADE∽△BCE,
    ∴∠A=∠CBE,
    ∴FA=FB,
    由问题情景中的结论可得:ED+EC=BH,
    设DH=x,
    ∴AH=AD+DH=3+x,
    ∵BH⊥AF,
    ∴∠BHA=90°,
    ∴BH2=BD2﹣DH2=AB2﹣AH2,
    ∵AB=2,AD=3,BD=,
    ∴()2﹣x2=(2)2﹣(3+x)2,
    ∴x=1,
    ∴BH2=BD2﹣DH2=37﹣1=36,
    ∴BH=6,
    ∴ED+EC=6,
    ∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
    ∴DM=EM=AE,CN=EN=BE,
    ∴△DEM与△CEN的周长之和
    =DE+DM+EM+CN+EN+EC
    =DE+AE+BE+EC
    =DE+AB+EC
    =DE+EC+AB
    =6+2,
    ∴△DEM与△CEN的周长之和(6+2)dm.
    【点睛】
    此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
    24、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
    【解析】
    (1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【详解】
    (1)根据题意,作图得,y=4.5故答案为:4.5
    (2)根据数据画图得

    (3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【点睛】
    本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
    25、(1)证明见解析(2)1
    【解析】
    (1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;
    (2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.
    【详解】
    (1)连接OC.

    ∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.
    在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.
    ∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.
    (2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.
    ∵AB=10,∴OC=1.
    由(1)知∠OCF=90°,∴CF=OC•tan∠COB=1.
    【点睛】
    本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.
    26、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
    【解析】
    利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;
    由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;
    由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论.
    【详解】
    当时,有,
    解得:,,
    点A的坐标为.
    当时,,
    点B的坐标为.

    ,解得:,
    抛物线的解析式为.
    点A的坐标为,点B的坐标为,
    直线AB的解析式为.
    点D的横坐标为x,则点D的坐标为,点E的坐标为,
    如图.

    点F的坐标为,点A的坐标为,点B的坐标为,
    ,,,


    当时,S取最大值,最大值为18,此时点E的坐标为,
    与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.
    ,,
    若要和相似,只需或如图.

    设点D的坐标为,则点E的坐标为,

    当时,,


    为等腰直角三角形.
    ,即,
    解得:舍去,,
    点D的坐标为;
    当时,点E的纵坐标为4,

    解得:,舍去,
    点D的坐标为.
    综上所述:存在点D,使得和相似,此时点D的坐标为或.
    故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标.
    27、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
    【解析】
    (1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
    (2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)解:设2018至2020年寝室数量的年平均增长率为x,
    根据题意得:64(1+x)2=121,
    解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
    答:2018至2020年寝室数量的年平均增长率为37.5%.
    (2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
    ∵单人间的数量在20至30之间(包括20和30),
    ∴ ,
    解得:15 ≤y≤16 .
    根据题意得:w=2y+20y+121﹣6y=16y+121,
    ∴当y=16时,16y+121取得最大值为1.
    答:该校的寝室建成后最多可供1名师生住宿.
    【点睛】
    本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.

    相关试卷

    2022年山东省潍坊市寿光市、安丘市市级名校中考试题猜想数学试卷含解析: 这是一份2022年山东省潍坊市寿光市、安丘市市级名校中考试题猜想数学试卷含解析,共20页。

    2022年甘肃省酒泉市市级名校中考试题猜想数学试卷含解析: 这是一份2022年甘肃省酒泉市市级名校中考试题猜想数学试卷含解析,共20页。试卷主要包含了是两个连续整数,若,则分别是.,若2<<3,则a的值可以是等内容,欢迎下载使用。

    2022届山东省高密市市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022届山东省高密市市级名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了一元二次方程的根的情况是,-3的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map