曲靖市重点中学2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
2.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
A. B.
C. D.
3.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米
A. B. C.+1 D.3
4.计算-3-1的结果是( )
A.2 B.-2 C.4 D.-4
5.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
6.下列图形中既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
7.下列图形不是正方体展开图的是( )
A. B.
C. D.
8.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是( )
A.7 B.3 C.1 D.﹣7
9.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
10.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )
A.42 B.96 C.84 D.48
11.下列所给函数中,y随x的增大而减小的是( )
A.y=﹣x﹣1 B.y=2x2(x≥0)
C. D.y=x+1
12.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一元二次方程x(x﹣2)=x﹣2的根是_____.
14.如图,直线 a∥b,直线 c 分别于 a,b 相交,∠1=50°,∠2=130°,则∠3 的度数为( )
A.50° B.80° C.100° D.130°
15.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.
16.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.
17.因式分解:3x3﹣12x=_____.
18.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,直线与双曲线相交于、两点.
(1) ,点坐标为 .
(2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标
20.(6分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
21.(6分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
22.(8分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).
23.(8分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x轴,垂足为C,求S△ABC.
24.(10分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
25.(10分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
26.(12分)阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
27.(12分)如图,抛物线(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
2、D
【解析】
试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
∴PA+PC=BC.故选D.
考点:作图—复杂作图.
3、C
【解析】
由题意可知,AC=1,AB=2,∠CAB=90°
据勾股定理则BC=m;
∴AC+BC=(1+)m.
答:树高为(1+)米.
故选C.
4、D
【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.
故选D.
5、C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
6、C
【解析】
根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故A错误;
B、是轴对称图形,不是中心对称图形,故B错误;
C、既是轴对称图形,也是中心对称图形,故C正确;
D、既不是轴对称图形,也不是中心对称图形,故D错误;
故选:C.
【点睛】
本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.
7、B
【解析】
由平面图形的折叠及正方体的展开图解题.
【详解】
A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
故选B.
【点睛】
此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
8、B
【解析】
因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,
故选B.
9、D
【解析】
试题解析:A、∵4+10+8+6+2=30(人),
∴参加本次植树活动共有30人,结论A正确;
B、∵10>8>6>4>2,
∴每人植树量的众数是4棵,结论B正确;
C、∵共有30个数,第15、16个数为5,
∴每人植树量的中位数是5棵,结论C正确;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植树量的平均数约是4.73棵,结论D不正确.
故选D.
考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
10、D
【解析】
由平移的性质知,BE=6,DE=AB=10,
∴OE=DE﹣DO=10﹣4=6,
∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.
故选D.
【点睛】
本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.
11、A
【解析】
根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.
【详解】
解:A.此函数为一次函数,y随x的增大而减小,正确;
B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;
C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;
D.此函数为一次函数,y随x的增大而增大,错误.
故选A.
【点睛】
本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.
12、B
【解析】
根据相似三角形的判定方法一一判断即可.
【详解】
解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1或1
【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案.
【详解】
x(x﹣1)=x﹣1,
x(x﹣1)﹣(x﹣1)=0,
(x﹣1)(x﹣1)=0,
x﹣1=0,x﹣1=0,
x1=1,x1=1,
故答案为:1或1.
【点睛】
本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.
14、B
【解析】
根据平行线的性质即可解决问题
【详解】
∵a∥b,
∴∠1+∠3=∠2,
∵∠1=50°,∠2=130°,
∴∠3=80°, 故选B.
【点睛】
考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.
15、6
【解析】
已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.
【详解】
∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,
∴x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,
即x12=2 x1+1, x22=2 x2+1,
∴=
故答案为6.
【点睛】
本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.
16、85
【解析】
根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.
【详解】
解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,
中位数为中间两数84和86的平均数,
∴这六位同学成绩的中位数是85.
【点睛】
本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.
17、3x(x+2)(x﹣2)
【解析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
18、1.
【解析】
先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.
【详解】
设多边形的边数为n.
因为正多边形内角和为 ,正多边形外角和为
根据题意得:
解得:n=8.
∴这个正多边形的每个外角
则这个正多边形的每个内角是
故答案为:1.
【点睛】
考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1),;(1),.
【解析】
(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
【详解】
解:(1)把点A(-1,a)代入一次函数y=x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(-1,3).
把点A(-1,3)代入反比例函数y=,
得:k=-3,
∴反比例函数的表达式y=-.
联立两个函数关系式成方程组得:
解得: 或
∴点B的坐标为(-3,1).
故答案为3,(-3,1);
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.
∵点B、B′关于x轴对称,点B的坐标为(-3,1),
∴点B′的坐标为(-3,-1),PB=PB′,
∵点A、A′关于y轴对称,点A的坐标为(-1,3),
∴点A′的坐标为(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
设直线A′B′的解析式为y=mx+n,
把A′,B′两点代入得:
解得:
∴直线A′B′的解析式为y=x+1.
令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
令x=0,则y=1,点Q的坐标为(0,1).
【点睛】
本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.
20、(1)证明见解析;(2)3或.(3)或0<
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
【详解】
(1)证明:∵矩形ABCD,
∴AD∥BC.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴△PFA∽△ABE.
(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=3,即x=3.
情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
即
∴满足条件的x的值为3或
(3) 或
【点睛】
两组角对应相等,两三角形相似.
21、 (1)y=,y=−x−1;(2)x<−2或0
(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.
【详解】
(1)∵A(−2,1)在反比例函数y=的图象上,
∴1=,解得m=−2.
∴反比例函数解析式为y=,
∵B(1,n)在反比例函数上,
∴n=−2,
∴B的坐标(1,−2),
把A(−2,1),B(1,−2)代入y=kx+b得
解得:
∴一次函数的解析式为y=−x−1;
(2)由图像知:当x<−2或0
本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.
22、(6+)米
【解析】
根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.
【详解】
解:延长PQ交地面与点C,
由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.
【点睛】
此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.
23、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;
(2)﹣3<x<0或x>2;
(3)1.
【解析】
(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式
(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围
(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积
【详解】
解:(1)∵点A(2,3)在y=的图象上,∴m=6,
∴反比例函数的解析式为:y=,
∴n==﹣2,
∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,
∴,
解得:,
∴一次函数的解析式为:y=x+1;
(2)由图象可知﹣3<x<0或x>2;
(3)以BC为底,则BC边上的高为3+2=1,
∴S△ABC=×2×1=1.
24、(1)见解析;(2)2 (3)1
【解析】
(1)通过证明∠BED=∠DBE得到DB=DE;
(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
(3)证明△DBF∽△ADB,然后利用相似比求AD的长.
【详解】
(1)证明:∵AD平分∠BAC,BE平分∠ABD,
∴∠1=∠2,∠3=∠4,
∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
∴DB=DE;
(2)解:连接CD,如图,
∵∠BAC=10°,
∴BC为直径,
∴∠BDC=10°,
∵∠1=∠2,
∴DB=BC,
∴△DBC为等腰直角三角形,
∴BC=BD=4,
∴△ABC外接圆的半径为2;
(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
∴△DBF∽△ADB,
∴=,即=,
∴AD=1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
25、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【解析】
设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解分式方程即可,注意验根.
【详解】
解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.1,
经检验,t=2.1是原分式方程的解,且符合题意,
∴1.4t=3.1.
答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.
26、 (1)-2,1;(2)x=3;(3)4m.
【解析】
(1)因式分解多项式,然后得结论;
(2)两边平方,把无理方程转化为整式方程,求解,注意验根;
(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,
【详解】
解:(1),
,
所以或或
,,;
故答案为,1;
(2),
方程的两边平方,得
即
或
,,
当时,,
所以不是原方程的解.
所以方程的解是;
(3)因为四边形是矩形,
所以,
设,则
因为,
,
两边平方,得
整理,得
两边平方并整理,得
即
所以.
经检验,是方程的解.
答:的长为.
【点睛】
考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.
27、(1);(2)(,0);(3)1,M(2,﹣3).
【解析】
试题分析:方法一:
(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.
(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.
方法二:
(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.
(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.
试题解析:解:方法一:
(1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);
∴OA=1,OC=2,OB=1,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;
所以该外接圆的圆心为AB的中点,且坐标为:(,0).
(3)已求得:B(1,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;
设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:
x+b=,即:,且△=0;
∴1﹣1×(﹣2﹣b)=0,即b=﹣1;
∴直线l:y=x﹣1.
所以点M即直线l和抛物线的唯一交点,有:,解得:
即 M(2,﹣3).
过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.
方法二:
(1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC= =﹣2,KBC= =,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).
(3)过点M作x轴的垂线交BC′于H,∵B(1,0),C(0,﹣2),∴lBC:y=x﹣2,设H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴当t=2时,S有最大值1,∴M(2,﹣3).
点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.
山东省菏泽重点中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份山东省菏泽重点中学2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列图形中,是轴对称图形的是,下列事件中必然发生的事件是等内容,欢迎下载使用。
2021-2022学年如皋实验初中重点中学中考数学模拟精编试卷含解析: 这是一份2021-2022学年如皋实验初中重点中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,估计﹣1的值为等内容,欢迎下载使用。
2021-2022学年河南省郑州市中学牟县重点中学中考数学模拟精编试卷含解析: 这是一份2021-2022学年河南省郑州市中学牟县重点中学中考数学模拟精编试卷含解析,共24页。试卷主要包含了下列计算正确的是,下列运算结果正确的是等内容,欢迎下载使用。