开学活动
搜索
    上传资料 赚现金

    内蒙古兴安市2022年中考数学四模试卷含解析

    内蒙古兴安市2022年中考数学四模试卷含解析第1页
    内蒙古兴安市2022年中考数学四模试卷含解析第2页
    内蒙古兴安市2022年中考数学四模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古兴安市2022年中考数学四模试卷含解析

    展开

    这是一份内蒙古兴安市2022年中考数学四模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下面计算中,正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
    A. B. C. D.
    2.若,则( )
    A. B. C. D.
    3.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为(  )

    A.① B.② C.③ D.④
    4.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是(  )
    A.3 B.4 C. D.
    5.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是(  )

    A.①② B.②③ C.①④ D.③④
    6.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为( )
    A.3 B.4 C.6 D.8
    7.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是(   )

    A.1 B.2 C.3 D.4
    8.如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是(  )

    A.美 B.丽 C.泗 D.阳
    9.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是(  )
    A.待定系数法 B.配方 C.降次 D.消元
    10.下面计算中,正确的是(  )
    A.(a+b)2=a2+b2 B.3a+4a=7a2
    C.(ab)3=ab3 D.a2•a5=a7
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.

    12.若,,则代数式的值为__________.
    13.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)

    14.计算(﹣a)3•a2的结果等于_____.
    15.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.

    16.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于__(结果用、的线性组合表示).
    三、解答题(共8题,共72分)
    17.(8分)化简:
    18.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
    (1)求证:DE是⊙O的切线;
    (2)若AD=16,DE=10,求BC的长.

    19.(8分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.
    (1)求抛物线的表达式及点B的坐标;
    (2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;
    (3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.
    20.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
    21.(8分)先化简,再求值:( +)÷,其中x=
    22.(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.

    (1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
    ②抛物线与的“完美三角形”的斜边长的数量关系是 ;
    (2)若抛物线的“完美三角形”的斜边长为4,求a的值;
    (3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
    23.(12分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
    (1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
    (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
    24.如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
    (1)判断AE与⊙O的位置关系,并说明理由;
    (2)若BC=6,AC=4CE时,求⊙O的半径.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.
    2、D
    【解析】
    等式左边为非负数,说明右边,由此可得b的取值范围.
    【详解】
    解:,
    ,解得
    故选D.
    【点睛】
    本题考查了二次根式的性质:,.
    3、C
    【解析】
    根据正方形的判定定理即可得到结论.
    【详解】
    与左边图形拼成一个正方形,
    正确的选择为③,
    故选C.
    【点睛】
    本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.
    4、C
    【解析】
    如图所示:
    过点O作OD⊥AB于点D,

    ∵OB=3,AB=4,OD⊥AB,
    ∴BD=AB=×4=2,
    在Rt△BOD中,OD=.
    故选C.
    5、B
    【解析】
    根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
    【详解】
    解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
    将A(1,2)代入y=ax2+bx,则2=9a+1b
    ∴b=,
    ∴a﹣b=a﹣()=4a﹣>-,故②正确;
    由正弦定义sinα=,则③正确;
    不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
    则满足条件x范围为x≥1或x≤0,则④错误.
    故答案为:B.
    【点睛】
    二次函数的图像,sinα公式,不等式的解集.
    6、C
    【解析】
    根据题意可以求出这个正n边形的中心角是60°,即可求出边数.
    【详解】
    ⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,
    则这个正n边形的中心角是60°,

    n的值为6,
    故选:C
    【点睛】
    考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.
    7、C
    【解析】
    ∵四边形ABCD是正方形,
    ∴AD=BC,∠DAB=∠ABC=90°,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中, ,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,
    ∵∠Q+∠QAB=90°,
    ∴∠P+∠QAB=90°,
    ∴∠AOP=90°,
    ∴AQ⊥DP;
    故①正确;
    ∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
    ∴∠DAO=∠P,
    ∴△DAO∽△APO,
    ∴ ,
    ∴AO2=OD•OP,
    ∵AE>AB,
    ∴AE>AD,
    ∴OD≠OE,
    ∴OA2≠OE•OP;故②错误;
    在△CQF与△BPE中 ,
    ∴△CQF≌△BPE,
    ∴CF=BE,
    ∴DF=CE,
    在△ADF与△DCE中, ,
    ∴△ADF≌△DCE,
    ∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
    即S△AOD=S四边形OECF;故③正确;
    ∵BP=1,AB=3,
    ∴AP=4,
    ∵△AOP∽△DAP,
    ∴ ,
    ∴BE=,∴QE=,
    ∵△QOE∽△PAD,
    ∴ ,
    ∴QO=,OE=,
    ∴AO=5﹣QO=,
    ∴tan∠OAE==,故④正确,
    故选C.
    点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.
    8、D
    【解析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    【详解】
    解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;
    故本题答案为:D.
    【点睛】
    本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键.
    9、C
    【解析】
    根据一元二次方程的解的定义即可求出答案.
    【详解】
    由题意可知:a2-a-1=0,
    ∴a2-a=1,
    或a2-1=a
    ∴a3-2a+1
    =a3-a-a+1
    =a(a2-1)-(a-1)
    =a2-a+1
    =1+1
    =2
    故选:C.
    【点睛】
    本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.
    10、D
    【解析】
    直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.
    【详解】
    A. (a+b)2=a2+b2+2ab,故此选项错误;
    B. 3a+4a=7a,故此选项错误;
    C. (ab)3=a3b3,故此选项错误;
    D. a2×a5=a7,正确。
    故选:D.
    【点睛】
    本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、54
    【解析】
    试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;
    第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,
    共有10个正方体,
    ∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,
    ∴搭成的大正方体的共有4×4×4=64个小正方体,
    ∴至少还需要64-10=54个小正方体.
    【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.
    12、-12
    【解析】
    分析:对所求代数式进行因式分解,把,,代入即可求解.
    详解:,,

    故答案为:
    点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.
    13、>
    【解析】
    根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定m+n以及m−n的符号,可得结果.
    【详解】
    解:根据题意得:m<1<n,且|m|>|n|,
    ∴m+n<1,m−n<1,
    ∴(m+n)(m−n)>1.
    故答案为>.
    【点睛】
    本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.
    14、﹣a5
    【解析】
    根据幂的乘方和积的乘方运算法则计算即可.
    【详解】
    解:(-a)3•a2=-a3•a2=-a3+2=-a5.
    故答案为:-a5.
    【点睛】
    本题考查了幂的乘方和积的乘方运算.
    15、12
    【解析】
    由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.
    【详解】
    解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.
    【点睛】
    此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.
    16、
    【解析】
    根据三角形法则求出即可解决问题;
    【详解】
    如图,

    ∵=, =,
    ∴=+=-,
    ∵BD=BC,
    ∴=.
    故答案为.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.

    三、解答题(共8题,共72分)
    17、x+2
    【解析】
    先把括号里的分式通分,化简,再计算除法.
    【详解】
    解:原式= =x+2
    【点睛】
    此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键.
    18、(1)证明见解析;(2)15.
    【解析】
    (1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
    (2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
    【详解】
    (1)证明:连结OD,∵∠ACB=90°,
    ∴∠A+∠B=90°,
    又∵OD=OB,
    ∴∠B=∠BDO,
    ∵∠ADE=∠A,
    ∴∠ADE+∠BDO=90°,
    ∴∠ODE=90°.
    ∴DE是⊙O的切线;
    (2)连结CD,∵∠ADE=∠A,

    ∴AE=DE.
    ∵BC是⊙O的直径,∠ACB=90°.
    ∴EC是⊙O的切线.
    ∴DE=EC.
    ∴AE=EC,
    又∵DE=10,
    ∴AC=2DE=20,
    在Rt△ADC中,DC=
    设BD=x,在Rt△BDC中,BC2=x2+122,
    在Rt△ABC中,BC2=(x+16)2﹣202,
    ∴x2+122=(x+16)2﹣202,解得x=9,
    ∴BC=.
    【点睛】
    考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
    19、(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);
    (2)y的取值范围是﹣3≤y<1.
    (2)b的取值范围是﹣<b<.
    【解析】
    (1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.
    【详解】
    (1)∵将A(2,0)代入,得m=1, ∴抛物线的表达式为y=-2x-2.
    令-2x-2=0,解得:x=2或x=-1, ∴B点的坐标(-1,0).
    (2)y=-2x-2=-3.
    ∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,
    ∴当x=1,y最小=-3. 又∵当x=-2,y=1, ∴y的取值范围是-3≤y<1.
    (2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+.
    当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2.
    由函数图象可知;b的取值范围是:-2<b<.
    【点睛】
    本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.
    20、(1)两次下降的百分率为10%;
    (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.
    【解析】
    (1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
    【详解】
    解:(1)设每次降价的百分率为 x.
    40×(1﹣x)2=32.4
    x=10%或 190%(190%不符合题意,舍去)
    答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,
    由题意,得

    解得:=1.1,=2.1,
    ∵有利于减少库存,∴y=2.1.
    答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
    21、-
    【解析】
    先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
    【详解】
    原式=[ +]÷=[-+]÷=·=,
    当x=时,原式==-.
    【点睛】
    本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    22、(1)AB=2;相等;(2)a=±;(3), .
    【解析】
    (1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
    (2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
    (3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
    【详解】
    (1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
    易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
    ∴,(舍去),∴抛物线的“完美三角形”的斜边
    ②相等;

    (2)∵抛物线与抛物线的形状相同,
    ∴抛物线与抛物线的“完美三角形”全等,
    ∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
    ∴B点坐标为(2,2)或(2,-2),∴.
    (3)∵ 的最大值为-1,
    ∴ ,
    ∴ ,
    ∵抛物线的“完美三角形”斜边长为n,
    ∴抛物线的“完美三角形”斜边长为n,
    ∴B点坐标为,
    ∴代入抛物线,得,
    ∴ (不合题意舍去),
    ∴,

    23、解:(1)10,50;
    (2)解法一(树状图):

    从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)= ;
    解法二(列表法):

    (以下过程同“解法一”)
    【解析】
    试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)10,50;
    (2)解法一(树状图):
    ,
    从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)==;
    解法二(列表法):


    0

    10

    20

    30

    0

    ﹣﹣

    10

    20

    30

    10

    10

    ﹣﹣

    30

    40

    20

    20

    30

    ﹣﹣

    50

    30

    30

    40

    50

    ﹣﹣

    从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)==;
    考点:列表法与树状图法.
    【详解】
    请在此输入详解!
    24、(1)AE与⊙O相切.理由见解析.(2)2.1
    【解析】
    (1)连接OM,则OM=OB,利用平行的判定和性质得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性质和切线的判定即可得证;
    (2)设⊙O的半径为r,则AO=12﹣r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM∽△ABE,根据相似三角形的性质即可求解.
    【详解】
    解:(1)AE与⊙O相切.
    理由如下:
    连接OM,则OM=OB,
    ∴∠OMB=∠OBM,
    ∵BM平分∠ABC,
    ∴∠OBM=∠EBM,
    ∴∠OMB=∠EBM,
    ∴OM∥BC,
    ∴∠AMO=∠AEB,
    在△ABC中,AB=AC,AE是角平分线,
    ∴AE⊥BC,
    ∴∠AEB=90°,
    ∴∠AMO=90°,
    ∴OM⊥AE,
    ∴AE与⊙O相切;
    (2)在△ABC中,AB=AC,AE是角平分线,
    ∴BE=BC,∠ABC=∠C,
    ∵BC=6,cosC=,
    ∴BE=3,cos∠ABC=,
    在△ABE中,∠AEB=90°,
    ∴AB===12,
    设⊙O的半径为r,则AO=12﹣r,
    ∵OM∥BC,
    ∴△AOM∽△ABE,
    ∴,
    ∴=,
    解得:r=2.1,
    ∴⊙O的半径为2.1.

    相关试卷

    2023年内蒙古兴安盟扎特旗中考数学模拟试卷(含解析):

    这是一份2023年内蒙古兴安盟扎特旗中考数学模拟试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    内蒙古呼伦贝尔满洲里市2023届中考数学四模试卷含解析:

    这是一份内蒙古呼伦贝尔满洲里市2023届中考数学四模试卷含解析,共15页。

    2022年内蒙古鄂尔多斯市中考数学四模试卷含解析:

    这是一份2022年内蒙古鄂尔多斯市中考数学四模试卷含解析,共18页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map