南京市秦淮区四校~2022年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
A.1 B. C. D.
2.若是关于x的方程的一个根,则方程的另一个根是( )
A.9 B.4 C.4 D.3
3.下列各数中,最小的数是
A. B. C.0 D.
4.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )
A.50,50 B.50,30 C.80,50 D.30,50
5.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是( )
A. B. C. D.
7.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
,其中正确的结论
A.只有①②. B.只有①③. C.只有②③. D.①②③.
8.下列式子中,与互为有理化因式的是( )
A. B. C. D.
9.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是( )
A.0 B.0.8 C.2.5 D.3.4
10.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.
12.已知抛物线y=ax2+bx+c=0(a≠0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 ________________.
13.分解因式:a3-a=
14.长城的总长大约为6700000m,将数6700000用科学记数法表示为______
15.函数y=中自变量x的取值范围是___________.
16.已知b是a,c的比例中项,若a=4,c=16,则b=________.
17.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
x
…
﹣3
﹣2
0
1
3
5
…
y
…
7
0
﹣8
﹣9
﹣5
7
…
则二次函数y=ax2+bx+c在x=2时,y=______.
三、解答题(共7小题,满分69分)
18.(10分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
19.(5分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度数;
(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.
20.(8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
(1)求证:△ACE≌△BCD;
(2)若DE=13,BD=12,求线段AB的长.
21.(10分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.
(1)指出条形统计图中存在的错误,并求出正确值;
(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?
(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?
22.(10分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
(1)△ACD与△ABC相似吗?为什么?
(2)AC2=AB•AD 成立吗?为什么?
23.(12分)我们来定义一种新运算:对于任意实数 x、y,“※”为 a※b=(a+1)(b+1)﹣1.
(1)计算(﹣3)※9
(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误)
(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.
24.(14分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
直接利用概率的意义分析得出答案.
【详解】
解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
故选B.
【点睛】
此题主要考查了概率的意义,明确概率的意义是解答的关键.
2、D
【解析】
解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,
解得a=,
故选D.
3、A
【解析】
应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
【详解】
解:因为在数轴上-3在其他数的左边,所以-3最小;
故选A.
【点睛】
此题考负数的大小比较,应理解数字大的负数反而小.
4、A
【解析】
分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.
详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).
故选A.
点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
5、D
【解析】
根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
∵直线y=ax+b(a≠0)经过第一,二,四象限,
∴a<0,b>0,
∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
故选D.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
6、B
【解析】
考点:概率公式.
专题:计算题.
分析:根据概率的求法,找准两点:
①全部情况的总数;
②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,
故概率为2/ 6 ="1/" 3 .
故选B.
点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .
7、D
【解析】
解:①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
过点C作CM⊥GB于M,CN⊥GD于N.
∴CM=CN,
则△CBM≌△CDN,(HL)
∴S四边形BCDG=S四边形CMGN.
S四边形CMGN=1S△CMG,
∵∠CGM=60°,
∴GM=CG,CM=CG,
∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.
③过点F作FP∥AE于P点.
∵AF=1FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=1AE,
∴FP:BE=1:6=FG:BG,
即 BG=6GF.
故选D.
8、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
9、D
【解析】
如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判断;
【详解】
如图,点O的运动轨迹是图在黄线,
作CH⊥BD于点H,
∵六边形ABCDE是正六边形,
∴∠BCD=120º,
∴∠CBH=30º,
∴BH=cos30 º·BC=,
∴BD=.
∵DK=,
∴BK=,
点B,O间的距离d的最小值为0,最大值为线段BK=,
∴0≤d≤,即0≤d≤3.1,
故点B,O间的距离不可能是3.4,
故选:D.
【点睛】
本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.
10、B
【解析】
过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
【详解】
如图,过点P作PE⊥OA于点E,
∵OP是∠AOB的平分线,
∴PE=PM,
∵PN∥OB,
∴∠POM=∠OPN,
∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
∴=.
故选:B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1≤x≤1
【解析】
此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;
【详解】
解:如图:①当F、D重合时,BP的值最小;
根据折叠的性质知:AF=PF=5;
在Rt△PFC中,PF=5,FC=1,则PC=4;
∴BP=xmin=1;
②当E、B重合时,BP的值最大;
由折叠的性质可得BP=AB=1.
所以BP的取值范围是:1≤x≤1.
故答案为:1≤x≤1.
【点睛】
此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.
12、或x=-1
【解析】
由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴.
【详解】
∵点A的坐标为(-2,0),线段AB的长为8,
∴点B的坐标为(1,0)或(-10,0).
∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,
∴抛物线的对称轴为直线x==2或x==-1.
故答案为x=2或x=-1.
【点睛】
本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.
13、
【解析】
a3-a=a(a2-1)=
14、6.7×106
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:6700000用科学记数法表示应记为6.7×106,故选6.7×106.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n的形式,其中1≤|a|<10,n为整数;表示时关键要正确确定a的值以及n的值.
15、x≥﹣且x≠1
【解析】
试题解析:根据题意得:
解得:x≥﹣且x≠1.
故答案为:x≥﹣且x≠1.
16、±8
【解析】
根据比例中项的定义即可求解.
【详解】
∵b是a,c的比例中项,若a=4,c=16,
∴b2=ac=4×16=64,
∴b=±8,
故答案为±8
【点睛】
此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
17、﹣1
【解析】
试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
解:∵x=﹣3时,y=7;x=5时,y=7,
∴二次函数图象的对称轴为直线x=1,
∴x=0和x=2时的函数值相等,
∴x=2时,y=﹣1.
故答案为﹣1.
三、解答题(共7小题,满分69分)
18、
【解析】
分析:按照实数的运算顺序进行运算即可.
详解:原式
点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
19、:(1) 30º;(2).
【解析】
分析:
(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;
(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.
详解:
(1) ∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,
∴∠CBA=∠A=60º,
∵BD平分∠ABC,
∴∠CDB=∠ABD=∠CBA=30º,
(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.
∴BD=AD A=2tan60º=2.
过点D作DH⊥AB,垂足为H,
∴AH=ADA=2sin60º=.
∵∠CDB=∠CBD=∠CBD=30º,
∴DC=BC=AD=2
∵AB=2AD=4
∴.
点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.
20、(3)证明见解析; (3)AB=3.
【解析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;
(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.
【详解】
证明:(3)如图,
∵△ACB与△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,
∵∠ACB=∠ECD=90°,
∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
∴∠BCD=∠ACE,在△BCD和△ACE中,
∵BC=AC,∠BCD=∠ACE,CD=CE,
∴△BCD≌△ACE(SAS);
(3)由(3)知△BCD≌△ACE,
则∠DBC=∠EAC,AE=BD=33,
∵∠CAD+∠DBC=90°,
∴∠EAC+∠CAD=90°,即∠EAD=90°,
∵AE=33,ED=33,
∴AD==5,
∴AB=AD+BD=33+5=3.
【点睛】
本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.
考点:3.全等三角形的判定与性质;3.等腰直角三角形.
21、(1)见解析;(2)140人;(1).
【解析】
(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;
(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;
(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.
【详解】
(1)由统计图可得:
(1分)
(2分)
(4分)
(5分)
甲(人)
0
1
7
6
4
乙(人)
2
2
5
8
4
全体(%)
5
12.5
10
15
17.5
乙组得分的人数统计有误,
理由:由条形统计图和扇形统计图的对应可得,
2÷5%=40,(1+2)÷12.5%=40,
(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,
故乙组得5分的人数统计有误,
正确人数应为:40×17.5%﹣4=1.
(2)800×(5%+12.5%)=140(人);
(1)如图得:
∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,
∴所选两人正好分在一组的概率是:.
【点睛】
本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.
22、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
【解析】
(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
(2)根据相似三角形的性质得出比例式,再进行变形即可.
【详解】
解:(1)△ACD 与△ABC相似,
理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
∴∠ADC=∠ACB=90°,
∵∠A=∠A,
∴△ACD∽∠ABC;
(2)AC2=AB•AD成立,理由是:
∵△ACD∽∠ABC,
∴=,
∴AC2=AB•AD.
【点睛】
本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
23、(1)-21;(2)正确;(3)运算“※”满足结合律
【解析】
(1)根据新定义运算法则即可求出答案.
(2)只需根据整式的运算证明法则a※b=b※a即可判断.
(3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.
【详解】
(1)(-3)※9=(-3+1)(9+1)-1=-21
(2)a※b=(a+1)(b+1)-1
b※a=(b+1)(a+1)-1,
∴a※b=b※a,
故满足交换律,故她判断正确;
(3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b
∵(a※b)※c=(ab+a+b)※c
=(ab+a+b+1)(c+1)-1
=abc+ac+ab+bc+a+b+c
∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c
∴(a※b)※c=a※(b※c)
∴运算“※”满足结合律
【点睛】
本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.
24、.
【解析】
试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.
试题解析:解:如图:
所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.
点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
2022年江苏省南京溧水区四校联考毕业升学考试模拟卷数学卷含解析: 这是一份2022年江苏省南京溧水区四校联考毕业升学考试模拟卷数学卷含解析,共21页。
2022年河南省许昌建安区四校联考毕业升学考试模拟卷数学卷含解析: 这是一份2022年河南省许昌建安区四校联考毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,直线与y轴交于点,实数4的倒数是等内容,欢迎下载使用。
2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是,计算-5x2-3x2的结果是,若,则的值为,化简的结果是,估计的值在等内容,欢迎下载使用。