辽宁省沈阳市沈北新区重点名校2022年中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )
A. B. C. D.
2.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为( )
A.正比例函数y=kx(k为常数,k≠0,x>0)
B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)
C.反比例函数y=(k为常数,k≠0,x>0)
D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
3.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+ )x+c=0(a≠0)的两根之和( )
A.大于0 B.等于0 C.小于0 D.不能确定
4.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
A.140元 B.150元 C.160元 D.200元
5.的值等于( )
A. B. C. D.
6.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
7.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了( )
A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%
8.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
A.k>- B.k>-且 C.k<- D.k-且
9.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是( )
A.60° B.45° C.35° D.30°
10.下列说法正确的是( )
A.某工厂质检员检测某批灯泡的使用寿命采用普查法
B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
C.12名同学中有两人的出生月份相同是必然事件
D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.
12.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.
13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
14.分解因式:x2y﹣2xy2+y3=_____.
15.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A)豆沙粽(B)小枣粽(C)蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.
16.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:
应聘者
专业素质
创新能力
外语水平
应变能力
A
73
85
78
85
B
81
82
80
75
如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)
三、解答题(共8题,共72分)
17.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
(1)若OB=6cm.
①求点C的坐标;
②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值是多少cm.
18.(8分)先化简÷(x-),然后从-
根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
20.(8分)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
21.(8分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.
22.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
23.(12分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).
(1)求抛物线的解析式;
(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.
①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;
②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
24.某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.
【详解】
因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,
所以P(飞镖落在黑色区域)==.
故答案选:D.
【点睛】
本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.
2、C
【解析】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.
【详解】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,
∵AE,BF为圆O的切线,
∴OE⊥AE,OF⊥FB,
∴∠AEO=∠BFO=90°,
在Rt△AEO和Rt△BFO中,
∵,
∴Rt△AEO≌Rt△BFO(HL),
∴∠A=∠B,
∴△QAB为等腰三角形,
又∵O为AB的中点,即AO=BO,
∴QO⊥AB,
∴∠QOB=∠QFO=90°,
又∵∠OQF=∠BQO,
∴△QOF∽△QBO,
∴∠B=∠QOF,
同理可以得到∠A=∠QOE,
∴∠QOF=∠QOE,
根据切线长定理得:OD平分∠EOG,OC平分∠GOF,
∴∠DOC=∠EOF=∠A=∠B,
又∵∠GCO=∠FCO,
∴△DOC∽△OBC,
同理可以得到△DOC∽△DAO,
∴△DAO∽△OBC,
∴,
∴AD•BC=AO•OB=AB2,即xy=AB2为定值,
设k=AB2,得到y=,
则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).
故选C.
【点睛】
本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.
3、C
【解析】
设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.
【详解】
解:设的两根为x1,x2,
∵由二次函数的图象可知,,
.
设方程的两根为m,n,则
.
故选C.
【点睛】
本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.
4、B
【解析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
5、C
【解析】
试题解析:根据特殊角的三角函数值,可知:
故选C.
6、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
7、D
【解析】
设第一季度的原产值为a,则第二季度的产值为 ,第三季度的产值为 ,则则第三季度的产值比第一季度的产值增长了
故选D.
8、B
【解析】
在与一元二次方程有关的求值问题中,必须满足下列条件:
(1)二次项系数不为零;
(2)在有两个实数根下必须满足△=b2-4ac≥1.
【详解】
由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
因此可求得k>且k≠1.
故选B.
【点睛】
本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.
9、A
【解析】
试题解析:连接OD,
∵四边形ABCO为平行四边形,
∴∠B=∠AOC,
∵点A. B. C.D在⊙O上,
由圆周角定理得,
解得,
∵OA=OD,OD=OC,
∴∠DAO=∠ODA,∠ODC=∠DCO,
故选A.
点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
10、B
【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
【详解】
A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
故答案选B.
【点睛】
本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、45°
【解析】
过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.
故答案为45°.
点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.
12、1.
【解析】
根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.
【详解】
∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.
【点睛】
考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.
13、
【解析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
【详解】
列表如下:
-2
-1
1
2
-2
2
-2
-4
-1
2
-1
-2
1
-2
-1
2
2
-4
-2
2
由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
∴积为大于-4小于2的概率为=,
故答案为.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
14、y(x﹣y)2
【解析】
原式提取公因式,再利用完全平方公式分解即可
【详解】
x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
15、120人, 3000人
【解析】
根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.
【详解】
调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);
若该社区有10000人,估计爱吃鲜肉粽的人数约为:100003000(人).
故答案为120人;3000人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.
16、A A的平均成绩高于B平均成绩
【解析】
根据表格求出A,B的平均成绩,比较大小即可解题.
【详解】
解:A的平均数是80.25,B的平均数是79.5,
∴A比B更优秀,
∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.
【点睛】
本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.
三、解答题(共8题,共72分)
17、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.
【解析】
试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:
在Rt△AOB中,AB=1,OB=6,则BC=6,
∴∠BAO=30°,∠ABO=60°,
又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,
∴BD=3,CD=3,
所以点C的坐标为(﹣3,9);
②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:
AO=1×cos∠BAO=1×cos30°=6.
∴A'O=6﹣x,B'O=6+x,A'B'=AB=1
在△A'O B'中,由勾股定理得,
(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),
∴滑动的距离为6(﹣1);
(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:
则OE=﹣x,OD=y,
∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,
∴△ACE∽△BCD,
∴,即,
∴y=﹣x,
OC2=x2+y2=x2+(﹣x)2=4x2,
∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,
故答案为1.
考点:相似三角形综合题.
18、当x=-1时,原式=; 当x=1时,原式=
【解析】
先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.
【详解】
原式=
=
=
∵-<x<,且x为整数,
∴若使分式有意义,x只能取-1和1
当x=1时,原式=.或:当x=-1时,原式=1
19、(1)5;(2)36%;(3).
【解析】
试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
(2)根据:小组频数= ,进行求解即可;
(3)利用列举法求概率即可.
试题解析:
(1)E类:50-2-3-22-18=5(人),故答案为:5;
补图如下:
(2)D类:1850×100%=36%,故答案为:36%;
(3)设这5人为
有以下10种情况:
其中,两人都在 的概率是: .
20、(1)A(-1,0),B(0,1),D(1,0)
(2)一次函数的解析式为 反比例函数的解析式为
【解析】解:(1)∵OA=OB=OD=1,
∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0)。
(2)∵点A、B在一次函数(k≠0)的图象上,
∴,解得。
∴一次函数的解析式为。
∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2)。
又∵点C在反比例函数(m≠0)的图象上,∴m=1×2=2。
∴反比例函数的解析式为。
(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。
(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。
21、见解析.
【解析】
试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.
试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,
∴CE=CD,BC=AC,
∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,
∴∠ECB=∠DCA,
在△CDA与△CEB中,,
∴△CDA≌△CEB.
考点:全等三角形的判定;等腰直角三角形.
22、(1);(2)
【解析】
(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
【详解】
解:(1)画树状图得:
共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
所以都选择A通道通过的概率为,
故答案为:;
(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
∴至少有两辆汽车选择B通道通过的概率为.
【点睛】
考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
23、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).
【解析】
(1)应用待定系数法问题可解;
(2)①通过分类讨论研究△APQ和△CDO全等
②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.
【详解】
(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得
,
解得: ,
∴抛物线解析式为:y=-x2-x+3;
(2)①存在点D,使得△APQ和△CDO全等,
当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,
∴tan∠QAP=tan∠DCO,
,
∴,
∴OD=,
∴点D坐标为(-,0).
由对称性,当点D坐标为(,0)时,
由点B坐标为(4,0),
此时点D(,0)在线段OB上满足条件.
②∵OC=3,OB=4,
∴BC=5,
∵∠DCB=∠CDB,
∴BD=BC=5,
∴OD=BD-OB=1,
则点D坐标为(-1,0)且AD=BD=5,
连DN,CM,
则DN=DM,∠NDC=∠MDC,
∴∠NDC=∠DCB,
∴DN∥BC,
∴,
则点N为AC中点.
∴DN时△ABC的中位线,
∵DN=DM=BC=,
∴OM=DM-OD=
∴点M(,0)
【点睛】
本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.
24、 (1)y=2x+2(2)这位乘客乘车的里程是15km
【解析】
(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
(2)将y=32代入(1)的解析式就可以求出x的值.
【详解】
(1)由图象得:
出租车的起步价是8元;
设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得
,
解得:
故y与x的函数关系式为:y=2x+2;
(2)∵32元>8元,
∴当y=32时,
32=2x+2,
x=15
答:这位乘客乘车的里程是15km.
2022届辽宁省沈阳市实验北重点名校中考五模数学试题含解析: 这是一份2022届辽宁省沈阳市实验北重点名校中考五模数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,已知等内容,欢迎下载使用。
2022届辽宁省沈阳市沈北新区重点名校中考联考数学试题含解析: 这是一份2022届辽宁省沈阳市沈北新区重点名校中考联考数学试题含解析,共23页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
2022届辽宁省沈阳市沈北新区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022届辽宁省沈阳市沈北新区重点达标名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了在平面直角坐标系中,点P,点P,已知函数的图象与x轴有交点等内容,欢迎下载使用。