|试卷下载
搜索
    上传资料 赚现金
    2022年辽宁省沈阳市沈北新区中考数学模试卷含解析
    立即下载
    加入资料篮
    2022年辽宁省沈阳市沈北新区中考数学模试卷含解析01
    2022年辽宁省沈阳市沈北新区中考数学模试卷含解析02
    2022年辽宁省沈阳市沈北新区中考数学模试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年辽宁省沈阳市沈北新区中考数学模试卷含解析

    展开
    这是一份2022年辽宁省沈阳市沈北新区中考数学模试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,若分式方程无解,则a的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是( )

    A.45° B.85° C.90° D.95°
    2.下列事件中为必然事件的是( )
    A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起
    C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹
    3.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    4.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )

    A.12 B.48 C.72 D.96
    5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )

    A.14° B.15° C.16° D.17°
    6. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
    A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
    7.若分式方程无解,则a的值为(  )
    A.0 B.-1 C.0或-1 D.1或-1
    8.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()

    A. B. C. D.
    9.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )

    A.(2,1) B.(2,0) C.(3,3) D.(3,1)
    10.若关于的一元二次方程有两个不相等的实数根,则一次函数
    的图象可能是:
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.
    12.已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是___.(结果保留π)
    13.若正n边形的内角为,则边数n为_____________.
    14. 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是_______.
    15.若a,b互为相反数,则a2﹣b2=_____.
    16.已知一块等腰三角形钢板的底边长为60cm,腰长为50 cm,能从这块钢板上截得得最大圆得半径为________cm
    三、解答题(共8题,共72分)
    17.(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:

    设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.
    18.(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

    (1)将上面的条形统计图补充完整;
    (2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
    (3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
    19.(8分)如图,点,在上,直线是的切线,.连接交于.

    (1)求证:
    (2)若,的半径为,求的长.
    20.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
    A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
    根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:

    (1)请你补全条形统计图;
    (2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;
    (3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
    21.(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
    22.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
    23.(12分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.
    (1)求线段的长(用含的代数式表示);
    (2)求时,求与之间的函数解析式,并写出的取值范围;
    (3)当时,直接写出的取值范围.

    24.某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    解:∵AC是⊙O的直径,∴∠ABC=90°,
    ∵∠C=50°,∴∠BAC=40°,
    ∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,
    ∴∠CAD=∠DBC=45°,
    ∴∠BAD=∠BAC+∠CAD=40°+45°=85°,
    故选B.
    【点睛】
    本题考查圆周角定理;圆心角、弧、弦的关系.
    2、B
    【解析】
    分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:
    A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;
    B、早晨的太阳从东方升起,是必然事件,故本选项正确;
    C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;
    D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.
    故选B.
    3、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    4、C
    【解析】
    解:根据图形,
    身高在169.5cm~174.5cm之间的人数的百分比为:,
    ∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
    故选C.
    5、C
    【解析】
    依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
    【详解】
    如图,

    ∵∠ABC=60°,∠2=44°,
    ∴∠EBC=16°,
    ∵BE∥CD,
    ∴∠1=∠EBC=16°,
    故选:C.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    6、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    567000=5.67×105,
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、D
    【解析】
    试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
    整理得:x(1-a)=2a,
    当1-a=0时,即a=1,整式方程无解,
    当x+1=0,即x=-1时,分式方程无解,
    把x=-1代入x(1-a)=2a得:-(1-a)=2a,
    解得:a=-1,
    故选D.
    点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
    8、B
    【解析】
    根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.
    【详解】
    解:∵一次函数y=ax+b图像过一、二、四,
    ∴a<0,b>0,
    又∵反比例 函数y=图像经过二、四象限,
    ∴c<0,
    ∴二次函数对称轴:>0,
    ∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,
    故答案为B.
    【点睛】
    本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.
    9、A
    【解析】
    根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
    【详解】
    由题意得,△ODC∽△OBA,相似比是,
    ∴,
    又OB=6,AB=3,
    ∴OD=2,CD=1,
    ∴点C的坐标为:(2,1),
    故选A.
    【点睛】
    本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
    10、B
    【解析】
    由方程有两个不相等的实数根,
    可得,
    解得,即异号,
    当时,一次函数的图象过一三四象限,
    当时,一次函数的图象过一二四象限,故答案选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.
    【详解】
    a2+b2﹣8a﹣4b+20=0,
    a2﹣8a+16+b2﹣4b+4=0,
    (a﹣4)2+(b﹣2)2=0
    a﹣4=0,b﹣2=0,
    a=4,b=2,
    则a2﹣b2=16﹣4=1,
    故答案为1.
    【点睛】
    本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.
    12、8π
    【解析】
    根据圆锥的侧面积=底面周长×母线长÷2公式即可求出.
    【详解】
    ∵圆锥体的底面半径为2,
    ∴底面周长为2πr=4π,
    ∴圆锥的侧面积=4π×4÷2=8π.
    故答案为:8π.
    【点睛】
    灵活运用圆的周长公式和扇形面积公式.
    13、9
    【解析】
    分析:
    根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.
    详解:
    由题意可得:140n=180(n-2),
    解得:n=9.
    故答案为:9.
    点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).
    14、.
    【解析】
    试题分析:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°==.故答案为.
    考点:特殊角的三角函数值;新定义.
    15、1
    【解析】
    【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.
    【详解】∵a,b互为相反数,
    ∴a+b=1,
    ∴a2﹣b2=(a+b)(a﹣b)=1,
    故答案为1.
    【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.
    16、15
    【解析】
    如图,等腰△ABC的内切圆⊙O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是△ABC的角平分线,AB=AC=50cm,BC=60cm,
    ∴∠ADB=90°,BD=CD=30cm,
    ∴AD=(cm),
    连接圆心O和切点E,则∠BEO=90°,
    又∵OD=OE,OB=OB,
    ∴△BEO≌△BDO,
    ∴BE=BD=30cm,
    ∴AE=AB-BE=50-30=20cm,
    设OD=OE=x,则AO=40-x,
    在Rt△AOE中,由勾股定理可得:,
    解得:(cm).
    即能截得的最大圆的半径为15cm.
    故答案为:15.

    点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a、b、c,面积为S,内切圆的半径为r,则.

    三、解答题(共8题,共72分)
    17、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.
    【解析】
    (1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 .
    (2) 根据中位数和众数的定义求解可得;
    (3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 .
    【详解】
    (1)依题可得:
    “不称职”人数为:2+2=4(人),
    “基本称职”人数为:2+3+3+2=10(人),
    “称职”人数为:4+5+4+3+4=20(人),
    ∴总人数为:20÷50%=40(人),
    ∴不称职”百分比:a=4÷40=10%,
    “基本称职”百分比:b=10÷40=25%,
    “优秀”百分比:d=1-10%-25%-50%=15%,
    ∴“优秀”人数为:40×15%=6(人),
    ∴得26分的人数为:6-2-1-1=2(人),
    补全统计图如图所示:

    (2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,
    “优秀”25万2人,26万2人,27万1人,28万1人;
    “称职”的销售员月销售额的中位数为:22万,众数:21万;
    “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;
    (3)由(2)知月销售额奖励标准应定为22万.
    ∵“称职”和“优秀”的销售员月销售额的中位数为:22万,
    ∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.
    【点睛】
    考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.
    18、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【解析】
    (1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;
    (2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;
    (3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.
    【详解】
    解:(1)本次调查共抽取的学生有(名)
    选择“友善”的人数有(名)
    ∴条形统计图如图所示:

    (2)∵选择“爱国”主题所对应的百分比为,
    ∴选择“爱国”主题所对应的圆心角是;
    (3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.
    故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    19、(1)证明见解析;(2)1.
    【解析】
    (1)连结OA,由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由,得到∠BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;
    (2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长.
    【详解】
    (1)如图,连接,
    ∵切于,
    ∴,

    又∵,
    ∴在中:
    ∵,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴;

    (2)∵在中:, ,
    由勾股定理得:,
    由(1)得:,
    ∴.
    【点睛】
    此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
    20、(1)详见解析;(2)72°;(3)
    【解析】
    (1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
    (2)用360°乘以C类别人数所占比例即可得;
    (3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
    【详解】
    解:(1)∵ 抽 查的总人数为:(人)
    ∴ 类人数为:(人)
    补全条形统计图如下:

    (2)“碳酸饮料”所在的扇形的圆心角度数为:
    (3)设男生为、,女生为、、,
    画树状图得:

    ∴恰好抽到一男一女的情况共有12 种,分别是
    ∴ (恰好抽到一男一女).
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元
    【解析】
    (1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
    (2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,
    由题意,得 ,
    解得x=1500,
    经检验,x=1500是原分式方程的解,
    乙种品牌空调的进价为(1+20%)×1500=1800(元).
    答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;
    (2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,
    由题意,得1500a+1800(10-a)≤16000,
    解得 ≤a,
    设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,
    因为-700<0,
    则w随a的增大而减少,
    当a=7时,w最大,最大为12100元.
    答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.
    【点睛】
    本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.
    22、(1)120件;(2)150元.
    【解析】
    试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
    试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
    由题意可得:,解得,经检验是原方程的根.
    (2)设每件衬衫的标价至少是元.
    由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
    由题意可得:
    解得:,所以,,即每件衬衫的标价至少是150元.
    考点:1、分式方程的应用 2、一元一次不等式的应用.
    23、(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.
    (2)y=;(3)5≤x≤9
    【解析】
    (1)分点P在线段CD或在线段AD上两种情形分别求解即可.
    (2)分三种情形:①当5≤x≤1时,如图1中,根据y=S△DPB,求解即可.②当1<x≤9时,如图2中,根据y=S△DPB,求解即可.③9<x≤14时,如图3中,根据y=S△APQ+S△ABQ-S△PAB计算即可.
    (3)根据(2)中结论即可判断.
    【详解】
    解:(1)当0<x≤1时,PD=1-x,
    当1<x≤14时,PD=x-1.

    (2)①当5≤x≤1时,如图1中,

    ∵四边形ABCD是矩形,
    ∴OD=OB,
    ∴y=S△DPB=ו(1-x)•6=(1-x)=12-x.

    ②当1<x≤9时,如图2中,y=S△DPB=×(x-1)×1=2x-2.


    ③9<x≤14时,如图3中,y=S△APQ+S△ABQ-S△PAB=•(14-x)•(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.

    综上所述,y=.

    (3)由(2)可知:当5≤x≤9时,y=S△BDP.
    【点睛】
    本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
    24、29.8米.
    【解析】
    作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
    【详解】
    解:如图,作,,
    由题意得:


    米,
    米,
    则米,
    答:这架无人飞机的飞行高度为米.

    【点睛】
    此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.

    相关试卷

    辽宁省沈阳市沈北新区重点名校2022年中考数学模试卷含解析: 这是一份辽宁省沈阳市沈北新区重点名校2022年中考数学模试卷含解析,共20页。试卷主要包含了的值等于,下列说法正确的是等内容,欢迎下载使用。

    2022届辽宁省沈阳市沈北新区重点名校中考联考数学试题含解析: 这是一份2022届辽宁省沈阳市沈北新区重点名校中考联考数学试题含解析,共23页。试卷主要包含了化简的结果是等内容,欢迎下载使用。

    2022届辽宁省沈阳市沈北新区中考数学适应性模拟试题含解析: 这是一份2022届辽宁省沈阳市沈北新区中考数学适应性模拟试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,“绿水青山就是金山银山”,下列各式计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map