江西省鹰潭市达标名校2022年中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是( )
A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外
C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外
2.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )
A. B. C. D.
3.下列实数中,有理数是( )
A. B. C.π D.
4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是( )
A.①②③ B.仅有①② C.仅有①③ D.仅有②③
5.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是( )
A.a<0 B.b2-4ac<0 C.当-1
6.的绝对值是( )
A.﹣4 B. C.4 D.0.4
7.计算2a2+3a2的结果是( )
A.5a4 B.6a2 C.6a4 D.5a2
8.某商品价格为元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )
A.0.96元 B.0.972元 C.1.08元 D.元
9.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
10.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为( )
A.5 B.6 C.7 D.8
二、填空题(共7小题,每小题3分,满分21分)
11.用不等号“>”或“<”连接:sin50°_____cos50°.
12.对于函数y= ,当函数y﹤-3时,自变量x的取值范围是____________ .
13.若关于的一元二次方程有实数根,则的取值范围是________.
14.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.
15.使有意义的的取值范围是__________.
16.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
17.如图,二次函数y=ax2+bx+c(a≠0)的图象与轴相交于点A、B,若其对称轴为直线x=2,则OB–OA的值为_______.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
求,,的值;求四边形的面积.
19.(5分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.
20.(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.
(1)按如下分数段整理、描述这两组数据:
成绩x
学生
70≤x≤74
75≤x≤79
80≤x≤84
85≤x≤89
90≤x≤94
95≤x≤100
甲
______
______
______
______
______
______
乙
1
1
4
2
1
1
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
学生
极差
平均数
中位数
众数
方差
甲
______
83.7
______
86
13.21
乙
24
83.7
82
______
46.21
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
21.(10分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:
(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
22.(10分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).
根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:
若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
23.(12分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
(1)求出的值;
(2)求直线AB对应的一次函数的表达式;
(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).
24.(14分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.
【详解】
由题意可求出∠A=30°,AB=2BC=4, 由勾股定理得AC==2,
AB=4>3, AC=2>3,点B、点C都在⊙A外.
故答案选D.
【点睛】
本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.
2、B
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
故选:B.
【点睛】
此题考查由三视图判断几何体,解题关键在于识别图形
3、B
【解析】
实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,等,很容易选择.
【详解】
A、二次根2不能正好开方,即为无理数,故本选项错误,
B、无限循环小数为有理数,符合;
C、为无理数,故本选项错误;
D、不能正好开方,即为无理数,故本选项错误;
故选B.
【点睛】
本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案.
4、A
【解析】
解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.
∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.
∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.
∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m. 因此②正确.
∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s. 因此③正确.
终上所述,①②③结论皆正确.故选A.
5、D
【解析】
试题分析:根据二次函数的图象和性质进行判断即可.
解:∵抛物线开口向上,
∴
∴A选项错误,
∵抛物线与x轴有两个交点,
∴
∴B选项错误,
由图象可知,当-1
由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为
即-=1,
∴D选项正确,
故选D.
6、B
【解析】
分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
详解:因为-的相反数为
所以-的绝对值为.
故选:B
点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
7、D
【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
【详解】
2a2+3a2=5a2.
故选D.
【点睛】
本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
8、B
【解析】
提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.
【详解】
第一次降价后的价格为a×(1-10%)=0.9a元,
第二次降价后的价格为0.9a×(1-10%)=0.81a元,
∴提价20%的价格为0.81a×(1+20%)=0.972a元,
故选B.
【点睛】
本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.
9、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
10、C
【解析】
作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
【详解】
解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
设D(x,),
∵四边形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠DCB=90°,
易得△AGD≌△DHC≌△CMB(AAS),
∴AG=DH=﹣x﹣1,
∴DG=BM,
∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
解得x=﹣2,
∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
∵AG=DH=﹣1﹣x=1,
∴点E的纵坐标为﹣4,
当y=﹣4时,x=﹣,
∴E(﹣,﹣4),
∴EH=2﹣=,
∴CE=CH﹣HE=4﹣=,
∴S△CEB=CE•BM=××4=7;
故选C.
【点睛】
考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
二、填空题(共7小题,每小题3分,满分21分)
11、>
【解析】
试题解析:∵cos50°=sin40°,sin50°>sin40°,
∴sin50°>cos50°.
故答案为>.
点睛:当角度在0°~90°间变化时,
①正弦值随着角度的增大(或减小)而增大(或减小);
②余弦值随着角度的增大(或减小)而减小(或增大);
③正切值随着角度的增大(或减小)而增大(或减小).
12、-
根据反比例函数的性质:y随x的增大而减小去解答.
【详解】
解:函数y= 中,y随x的增大而减小,当函数y﹤-3时
又函数y= 中,
故答案为:-
此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.
13、
【解析】
由题意可得,△=9-4m≥0,由此求得m的范围.
【详解】
∵关于x的一元二次方程x2-3x+m=0有实数根,
∴△=9-4m≥0,
求得 m≤.
故答案为:
【点睛】
本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.
14、1.
【解析】
过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出k的值即可得出结论.
解:如图所示,
过点B作BE⊥x轴于点E,
∵D为OB的中点,
∴CD是△OBE的中位线,即CD=BE.
设A(x,),则B(2x,),CD=,AD=﹣,
∵△ADO的面积为1,
∴AD•OC=3,(﹣)•x=3,解得k=1,
故答案为1.
15、
【解析】
根据二次根式的被开方数为非负数求解即可.
【详解】
由题意可得:,解得:.
所以答案为.
【点睛】
本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.
16、4
【解析】
根据锐角的余弦值等于邻边比对边列式求解即可.
【详解】
∵∠C=90°,AB=6,
∴,
∴BC=4.
【点睛】
本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
17、4
【解析】
试题分析:设OB的长度为x,则根据二次函数的对称性可得:点B的坐标为(x+2,0),点A的坐标为(2-x,0),则OB-OA=x+2-(x-2)=4.
点睛:本题主要考查的就是二次函数的性质.如果二次函数与x轴的两个交点坐标为(,0)和(,0),则函数的对称轴为直线:x=.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x的正半轴,则点的横坐标就是线段的长度,如果点在x的负半轴,则点的横坐标的相反数就是线段的长度.
三、解答题(共7小题,满分69分)
18、(1),,.(2)6
【解析】
(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
【详解】
解:(1)∵点在上,
∴,
∵点在上,且,
∴.
∵过,两点,
∴,
解得,
∴,,.
(2)如图,延长,交于点,则.
∵轴,轴,
∴,,
∴,,
∴
.
∴四边形的面积为6.
【点睛】
考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
19、(1)详见解析;(2).
【解析】
∵四边形ABCD是矩形,
∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
∴∠EAD=∠AFB,
∵DE⊥AF,
∴∠AED=90°,
在△ADE和△FAB中,
∴△ADE≌△FAB(AAS),
∴AE=BF=1
∵BF=FC=1
∴BC=AD=2
故在Rt△ADE中,∠ADE=30°,DE=,
∴的长==.
20、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析
【解析】
(1)根据折线统计图数字进行填表即可;
(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;
(3)可分别从平均数、方差、极差三方面进行比较.
【详解】
(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,
∴70⩽x⩽74无,共0个;
75⩽x⩽79之间有75,共1个;
80⩽x⩽84之间有84,82,1,83,共4个;
85⩽x⩽89之间有89,86,86,85,86,共5个;
90⩽x⩽94之间和95⩽x⩽100无,共0个.
故答案为0;1;4;5;0;0;
(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;
∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,
∴中位数为(84+85)=84.5;
∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,
1出现3次,乙成绩的众数为1.
故答案为14;84.5;1;
(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.
或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
【点睛】
此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.
21、(1)60人;(2)144°,补全图形见解析;(3)15万人.
【解析】
(1)用B景点人数除以其所占百分比可得;
(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;
(3)用总人数乘以样本中D景点人数所占比例
【详解】
(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;
(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,
补全图形如下:
(3)估计选择去景点D旅游的人数为90×=15(万人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22、(1),见解析;(2)125人;(3)
【解析】
(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.
【详解】
(1)解:(1)n=20-1-3-8-5=3;
强化训练前的中位数,
强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
强化训练后的众数为8,
故答案为3;7.5;8.3;8;
(2)(人)
(3)(3)画树状图为:
共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,
所以所抽取的两名同学恰好是一男一女的概率P=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
23、(2)2;(2)y=x+2;(3).
【解析】
(2)确定A、B、C的坐标即可解决问题;
(2)理由待定系数法即可解决问题;
(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
【详解】
解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
∴A(2,2),B(-2,-2),C(3,2)
∴k=2.
(2)设直线AB的解析式为y=mx+n,则有,
解得,
∴直线AB的解析式为y=x+2.
(3)∵C、D关于直线AB对称,
∴D(0,4)
作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,
此时PC+PD的值最小,最小值=CD′=.
【点睛】
本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
24、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
2024年江西省鹰潭市中考数学一模试卷(含解析): 这是一份2024年江西省鹰潭市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江西省鹰潭市余江县中考数学一模试卷(含解析): 这是一份2023年江西省鹰潭市余江县中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省鹰潭市名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江西省鹰潭市名校2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,的倒数的绝对值是,计算36÷等内容,欢迎下载使用。