![江苏省无锡市锡山高级中学2021-2022学年中考数学考试模拟冲刺卷含解析01](http://img-preview.51jiaoxi.com/2/3/13558725/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市锡山高级中学2021-2022学年中考数学考试模拟冲刺卷含解析02](http://img-preview.51jiaoxi.com/2/3/13558725/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市锡山高级中学2021-2022学年中考数学考试模拟冲刺卷含解析03](http://img-preview.51jiaoxi.com/2/3/13558725/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省无锡市锡山高级中学2021-2022学年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为( )
A.15 m B. m C. m D. m
2.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是( )
A.2011年我国的核电发电量占总发电量的比值约为1.5%
B.2006年我国的总发电量约为25000亿千瓦时
C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
D.我国的核电发电量从2008年开始突破1000亿千瓦时
3.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为( )
A.172 B.171 C.170 D.168
4.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是( )
A.+2 B.﹣3 C.+4 D.﹣1
5.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
A. B. C. D.
6.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )
A.4个 B.5个 C.6个 D.7个
7.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
A. B. C. D.
8.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )
A. B. C. D.
9.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G 到BE的距离是( )
A. B. C. D.
10.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为( )
A.0 B.0或﹣2 C.﹣2 D.2
11.下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
12.若△÷,则“△”可能是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:2a2﹣2=_____.
14.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.
15.请写出一个比2大且比4小的无理数:________.
16.若与是同类项,则的立方根是 .
17.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).
18.一个圆锥的侧面展开图是半径为8 cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
20.(6分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
销售单价x(元/kg)
120
130
…
180
每天销量y(kg)
100
95
…
70
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
21.(6分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“ 比较喜欢”、“ 不太喜欢”、“ 很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是 ,图②中所在扇形对应的圆心角是 ;
(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
22.(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
23.(8分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.
24.(10分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
表1:甲调查九年级30位同学植树情况
每人植树棵数
7
8
9
10
人数
3
6
15
6
表2:乙调查三个年级各10位同学植树情况
每人植树棵数
6
7
8
9
10
人数
3
6
3
12
6
根据以上材料回答下列问题:
(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;
(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
25.(10分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
26.(12分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.
(1)甲车间每天加工零件为_____件,图中d值为_____.
(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.
(3)甲车间加工多长时间时,两车间加工零件总数为1000件?
27.(12分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.
求证:△ECG≌△GHD;
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
过C作CE⊥AB,
Rt△ACE中,
∵∠CAD=60°,AC=15m,
∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC•cos30°=15×=,
∵∠BAC=30°,∠ACE=30°,
∴∠BCE=60°,
∴BE=CE•tan60°=×=22.5m,
∴AB=BE﹣AE=22.5﹣7.5=15m,
故选A.
【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.
2、B
【解析】
由折线统计图和条形统计图对各选项逐一判断即可得.
【详解】
解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
故选:B.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
3、C
【解析】
先把所给数据从小到大排列,然后根据中位数的定义求解即可.
【详解】
从小到大排列:
150,164,168,168,,172,176,183,185,
∴中位数为:(168+172)÷2=170.
故选C.
【点睛】
本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
4、D
【解析】
试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,
由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.
故选D.
5、A
【解析】
列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
【详解】
列表如下:
红
红
红
绿
绿
红
﹣﹣﹣
(红,红)
(红,红)
(绿,红)
(绿,绿)
红
(红,红)
﹣﹣﹣
(红,红)
(绿,红)
(绿,红)
红
(红,红)
(红,红)
﹣﹣﹣
(绿,红)
(绿,红)
绿
(红,绿)
(红,绿)
(红,绿)
﹣﹣﹣
(绿,绿)
绿
(红,绿)
(红,绿)
(红,绿)
(绿,绿)
﹣﹣﹣
∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,
∴,
故选A.
6、B
【解析】
由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.
【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:
则搭成这个几何体的小正方体最少有5个,
故选B.
【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.
【详解】
请在此输入详解!
【点睛】
请在此输入点睛!
7、D
【解析】
根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,
则抽到的书签正好是相对应的书名和作者姓名的概率是=;
故选D.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
8、B
【解析】
连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
【详解】
解:连接OA、OB,
∵四边形ABCD是正方形,
∴∠AOB=90°,∠OAB=45°,
∴OA=ABcos45°=4×=2,
所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
故选B.
【点睛】
本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.
9、A
【解析】
根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.
【详解】
连接GB、GE,
由已知可知∠BAE=45°.
又∵GE为正方形AEFG的对角线,
∴∠AEG=45°.
∴AB∥GE.
∵AE=4,AB与GE间的距离相等,
∴GE=8,S△BEG=S△AEG=SAEFG=1.
过点B作BH⊥AE于点H,
∵AB=2,
∴BH=AH=.
∴HE=3.
∴BE=2.
设点G到BE的距离为h.
∴S△BEG=•BE•h=×2×h=1.
∴h=.
即点G到BE的距离为.
故选A.
【点睛】
本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.
10、C
【解析】
由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.
【详解】
∵一元二次方程mx1+mx﹣=0有两个相等实数根,
∴△=m1﹣4m×(﹣)=m1+1m=0,
解得:m=0或m=﹣1,
经检验m=0不合题意,
则m=﹣1.
故选C.
【点睛】
此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
11、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故此选项不合题意;
B、是轴对称图形,不是中心对称图形,故此选项不合题意;
C、不是轴对称图形,不是中心对称图形,故此选项不合题意;
D、是轴对称图形,是中心对称图形,故此选项符合题意;
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
12、A
【解析】
直接利用分式的乘除运算法则计算得出答案.
【详解】
。
故选:A.
【点睛】
考查了分式的乘除运算,正确分解因式再化简是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2(a+1)(a﹣1).
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解.
【详解】
解:2a2﹣2,
=2(a2﹣1),
=2(a+1)(a﹣1).
【点睛】
本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
14、3
【解析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴影部分的面积为πx2×=×πx2=2π,
故解得:x1=3,x2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.
15、(或)
【解析】
利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
【详解】
设无理数为,,所以x的取值在4~16之间都可,故可填
【点睛】
本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
16、2.
【解析】
试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.
考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.
17、3n+1
【解析】
试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个
考点:规律型
18、cm
【解析】
试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,
根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=, r=cm.
考点:圆锥侧面展开扇形与底面圆之间的关系
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
【详解】
(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
∴﹣a+3=2,b=﹣×4+3,
∴a=2,b=1,
∴点A的坐标为(2,2),点B的坐标为(4,1),
又∵点A(2,2)在反比例函数y=的图象上,
∴k=2×2=4,
∴反比例函数的表达式为y=(x>0);
(2)延长CA交y轴于点E,延长CB交x轴于点F,
∵AC∥x轴,BC∥y轴,
则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
∴四边形OECF为矩形,且CE=4,CF=2,
∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
=2×4﹣×2×2﹣×4×1
=4,
设点P的坐标为(0,m),
则S△OAP=×2•|m|=4,
∴m=±4,
∴点P的坐标为(0,4)或(0,﹣4).
【点睛】
此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
20、 (1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.
【解析】
试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;
(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.
试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;
(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=,∵a=<0,∴当x<200时,y随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w==7000(元).
答:当销售单价为180元时,销售利润最大,最大利润是7000元.
21、(1)答案见解析;(2)B,54°;(3)240人.
【解析】
(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;
(2)根据众数的定义即可得出结论,然后利用360°乘A程度的人数所占抽查总人数的百分率即可得出结论;
(3)利用960乘C程度的人数所占抽查总人数的百分率即可.
【详解】
解:(1)被调查的学生总人数为人,
C程度的人数为人,
则的百分比为、的百分比为、的百分比为,
补全图形如下:
(2)所抽取学生对数学学习喜欢程度的众数是、图②中所在扇形对应的圆心角是.
故答案为:;;
(3)该年级学生中对数学学习“不太喜欢”的有人
答:该年级学生中对数学学习“不太喜欢”的有240人.
【点睛】
此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.
22、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
【详解】
(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
依题意,得解得
答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
依题意,得200a+170(30-a)≤5400,
解得a≤10.
答:A种型号的电风扇最多能采购10台.
(3)依题意,有(250-200)a+(210-170)(30-a)=1400,
解得a=20.
∵a≤10,
∴在(2)的条件下超市不能实现利润为1400元的目标.
【点睛】
本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
23、.
【解析】
试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
试题解析:解:画树状图如答图:
∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
∴P(A,C两个区域所涂颜色不相同)=.
考点:1.画树状图或列表法;2.概率.
24、(1)9,9;(2)乙;(3)1680棵;
【解析】
(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
【详解】
(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
故答案为:9,9;
(2)乙同学所抽取的样本能更好反映此次植树活动情况;
故答案为:乙;
(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
答:本次活动200位同学一共植树1680棵.
【点睛】
本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
25、(1)作图见解析;(2)作图见解析;5π(平方单位).
【解析】
(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
【详解】
解:(1)见图中△A′B′C′
(2)见图中△A″B′C″
扇形的面积(平方单位).
【点睛】
本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.
26、80 770
【解析】
(1)由图象的信息解答即可;
(2)利用待定系数法确定解析式即可;
(3)根据题意列出方程解答即可.
【详解】
(1)由图象甲车间每小时加工零件个数为720÷9=80个,
d=770,
故答案为:80,770
(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,
∴B(4,120),C(9,770)
设yBC=kx+b,过B、C,
∴,解得,
∴y=130x﹣400(4≤x≤9)
(3)由题意得:80x+130x﹣400=1000,
解得:x=
答:甲车间加工天时,两车间加工零件总数为1000件
【点睛】
一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.
27、见解析
【解析】
依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.
【详解】
证明:∵AF=FG,
∴∠FAG=∠FGA,
∵AG 平分∠CAB,
∴∠CAG=∠FAG,
∴∠CAG=∠FGA,
∴AC∥FG.
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∵F 是 AD 的中点,FG∥AE,
∴H 是 ED 的中点
∴FG 是线段 ED 的垂直平分线,
∴GE=GD,∠GDE=∠GED,
∴∠CGE=∠GDE,
∴△ECG≌△GHD.(AAS).
【点睛】
本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键.
2022届江苏省无锡市锡山高级中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届江苏省无锡市锡山高级中学初中数学毕业考试模拟冲刺卷含解析,共21页。
2021-2022学年江苏省无锡市新区重点名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年江苏省无锡市新区重点名校中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了如图,已知点A,下列命题中,真命题是等内容,欢迎下载使用。
2021-2022学年江苏省无锡市天一实验校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年江苏省无锡市天一实验校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列方程有实数根的是,- 的绝对值是等内容,欢迎下载使用。