2021-2022学年江苏省泰兴市泰兴区中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )
A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
2.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )
A.6 B.5 C.4 D.3
3.下列手机手势解锁图案中,是轴对称图形的是( )
A. B. C. D.
4.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )
A. B. C. D.
5.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )
A.2:3 B.3:2 C.4:5 D.4:9
6.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105
7.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则( )
A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a
8.下列说法正确的是( )
A.﹣3是相反数 B.3与﹣3互为相反数
C.3与互为相反数 D.3与﹣互为相反数
9.如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )
A. B. C. D.
10.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )
A.5cm B.12cm C.16cm D.20cm
二、填空题(共7小题,每小题3分,满分21分)
11.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
12.观察下列等式:
第1个等式:a1=;
第2个等式:a2=;
第3个等式:a3=;
…
请按以上规律解答下列问题:
(1)列出第5个等式:a5=_____;
(2)求a1+a2+a3+…+an=,那么n的值为_____.
13.4是_____的算术平方根.
14.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.
15.函数y= 中,自变量x的取值范围是 _____.
16.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.
17.分解因式:2a2﹣2=_____.
三、解答题(共7小题,满分69分)
18.(10分)计算:sin30°•tan60°+..
19.(5分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
20.(8分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)
21.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
22.(10分)先化简,再求值:,其中x=,y=.
23.(12分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.
24.(14分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
试题解析:AC=2,
则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
则OC′=3,
故C′的坐标是(3,0).
故选B.
考点:坐标与图形变化-旋转.
2、C
【解析】
连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
【详解】
解:连接EG、FG,
EG、FG分别为直角△BCE、直角△BCF的斜边中线,
∵直角三角形斜边中线长等于斜边长的一半
∴EG=FG=BC=×10=5,
∵D为EF中点
∴GD⊥EF,
即∠EDG=90°,
又∵D是EF的中点,
∴,
在中,
,
故选C.
【点睛】
本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
3、D
【解析】
根据轴对称图形与中心对称图形的定义进行判断.
【详解】
A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
4、B
【解析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.
【详解】
解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=
由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG= sin∠AFG = ,故选B.
【点睛】
本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
5、A
【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
【详解】
由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
∴△A′B′C′∽△ABC,
∵△A'B'C'与△ABC的面积的比4:9,
∴△A'B'C'与△ABC的相似比为2:3,
∴ ,
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
6、A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2180000的小数点向左移动6位得到2.18,
所以2180000用科学记数法表示为2.18×106,
故选A.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、A
【解析】
解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.
8、B
【解析】
符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.
【详解】
A、3和-3互为相反数,错误;
B、3与-3互为相反数,正确;
C、3与互为倒数,错误;
D、3与-互为负倒数,错误;
故选B.
【点睛】
此题考查相反数问题,正确理解相反数的定义是解答此题的关键.
9、B
【解析】
连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.
【详解】
连接BD,
∵AB是直径,∠BAD=25°,
∴∠ABD=90°-25°=65°,
∴∠AGD=∠ABD=65°,
故选B.
【点睛】
此题考查圆周角定理,关键是利用直径得出∠ABD=65°.
10、D
【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
【详解】
延长AB、DC相交于F,则BFC构成直角三角形,
运用勾股定理得:
BC2=(15-3)2+(1-4)2=122+162=400,
所以BC=1.
则剪去的直角三角形的斜边长为1cm.
故选D.
【点睛】
本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据多边形的内角和定理:180°•(n-2)求解即可.
【详解】
由题意可得:180°•(n-2)=150°•n,
解得n=1.
故多边形是1边形.
12、 49
【解析】
(1)观察等式可得 然后根据此规律就可解决问题;
(2)只需运用以上规律,采用拆项相消法即可解决问题.
【详解】
(1)观察等式,可得以下规律:,
∴
(2)
解得:n=49.
故答案为:49.
【点睛】
属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
13、16.
【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
14、1
【解析】
根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.
【详解】
解:根据题意得=1%,
解得n=1,
所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.
故答案为1.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
15、x≠﹣.
【解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
【详解】
解:根据分式有意义的条件得:2x+3≠1
解得:
故答案为
【点睛】
本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
16、x<﹣2或0<x<2
【解析】
仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.
【详解】
解:如图,
结合图象可得:
①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.
综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.
故答案为x<﹣2或0<x<2.
【点睛】
本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.
17、2(a+1)(a﹣1).
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解.
【详解】
解:2a2﹣2,
=2(a2﹣1),
=2(a+1)(a﹣1).
【点睛】
本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
三、解答题(共7小题,满分69分)
18、
【解析】
试题分析:把相关的特殊三角形函数值代入进行计算即可.
试题解析:原式=.
19、(1)画树状图得:
则共有9种等可能的结果;
(2)两次摸出的球上的数字和为偶数的概率为:.
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
试题解析:(1)画树状图得:
则共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
∴两次摸出的球上的数字和为偶数的概率为:.
考点:列表法与树状图法.
20、10
【解析】
试题分析:如图:过点C作CD⊥AB于点D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同样在Rt△BCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.
试题解析:如图:过点C作CD⊥AB于点D,
由已知可得:∠ACD=32°,∠BCD =37°,
在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,
在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,
∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,
答:小岛到海岸线的距离是10米.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.
21、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
∵M是BC的中点,∴BM=CM.
在△BDM和△CEM中,∵,
∴△BDM≌△CEM(SAS).∴MD=ME.
考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
22、x+y,.
【解析】
试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
试题解析:原式= ==x+y,
当x=,y==2时,原式=﹣2+2=.
23、(1)证明见解析;(2)1.
【解析】
(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;
(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.
【详解】
解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,
∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,
∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,
∴AB=AC;
(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,
在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,
∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,
则⊙O的半径为1.
【点睛】
本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.
24、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
江苏省泰兴市泰兴区2021-2022学年中考四模数学试题含解析: 这是一份江苏省泰兴市泰兴区2021-2022学年中考四模数学试题含解析,共18页。试卷主要包含了方程x2﹣3x=0的根是,在实数,有理数有等内容,欢迎下载使用。
江苏省江都区丁伙中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份江苏省江都区丁伙中学2021-2022学年中考数学考试模拟冲刺卷含解析,共26页。试卷主要包含了如图,在平面直角坐标系中,A等内容,欢迎下载使用。
2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析: 这是一份2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,关于的叙述正确的是,下列计算正确的是等内容,欢迎下载使用。