2021-2022学年江苏省无锡市天一实验校中考数学考试模拟冲刺卷含解析
展开这是一份2021-2022学年江苏省无锡市天一实验校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列方程有实数根的是,- 的绝对值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )
A.4个 B.5个 C.6个 D.7个
2.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )
A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90
3.如图,点从矩形的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( )
A. B. C. D.
4.如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
5.按如图所示的方法折纸,下面结论正确的个数( )
①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.
A.1 个 B.2 个 C.1 个 D.4 个
6.下列方程有实数根的是( )
A. B.
C.x+2x−1=0 D.
7.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数
10
20
30
50
100
150
180
240
330
450
“和为7”出现频数
2
7
10
16
30
46
59
81
110
150
“和为7”出现频率
0.20
0.35
0.33
0.32
0.30
0.30
0.33
0.34
0.33
0.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
A.0.33 B.0.34 C.0.20 D.0.35
8.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米
A. B. C.+1 D.3
9.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于( )
A.50° B.60° C.55° D.65°
10.- 的绝对值是( )
A.-4 B. C.4 D.0.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.
12.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.
13.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.
14.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.
15.分解因式:2m2-8=_______________.
16.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.
三、解答题(共8题,共72分)
17.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
18.(8分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
成绩
频数
频率
优秀
45
b
良好
a
0.3
合格
105
0.35
不合格
60
c
(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.
19.(8分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
20.(8分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
(1)如图①,求∠ODE的大小;
(2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.
21.(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
22.(10分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:
请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.
23.(12分)货车行驶25与轿车行驶35所用时间相同.已知轿车每小时比货车多行驶20,求货车行驶的速度.
24.在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
(1)画出△A1B1C1
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)在(2)的条件下求BC扫过的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.
【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:
则搭成这个几何体的小正方体最少有5个,
故选B.
【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.
【详解】
请在此输入详解!
【点睛】
请在此输入点睛!
2、A
【解析】
试题分析:设某种书包原价每个x元,根据题意列出方程解答即可. 设某种书包原价每个x元,
可得:0.8x﹣10=90
考点:由实际问题抽象出一元一次方程.
3、C
【解析】
由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.
【详解】
由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,
∴矩形的面积为4×8=32,
故选:C.
【点睛】
本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.
4、C
【解析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选:C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
5、C
【解析】
∵∠1+∠1=∠2,∠1+∠1+∠2=180°,
∴∠1+∠1=∠2=90°,故①正确;
∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;
∵∠1+∠1=90°,∠1+∠BAE=90°,
∴∠1=∠BAE,
又∵∠B=∠C,
∴△ABE∽△ECF.故③,④正确;
故选C.
6、C
【解析】
分析:根据方程解的定义,一一判断即可解决问题;
详解:A.∵x4>0,∴x4+2=0无解;故本选项不符合题意;
B.∵≥0,∴=﹣1无解,故本选项不符合题意;
C.∵x2+2x﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;
D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.
故选C.
点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
7、A
【解析】
根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
【详解】
由表中数据可知,出现“和为7”的概率为0.33.
故选A.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
8、C
【解析】
由题意可知,AC=1,AB=2,∠CAB=90°
据勾股定理则BC=m;
∴AC+BC=(1+)m.
答:树高为(1+)米.
故选C.
9、B
【解析】
由圆周角定理即可解答.
【详解】
∵△ABC是⊙O的内接三角形,
∴∠A= ∠BOC,
而∠BOC=120°,
∴∠A=60°.
故选B.
【点睛】
本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.
10、B
【解析】
直接用绝对值的意义求解.
【详解】
−的绝对值是.
故选B.
【点睛】
此题是绝对值题,掌握绝对值的意义是解本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
【详解】
如图,设与AD交于N,EF与AD交于M,
根据折叠的性质可得:,,,
四边形ABCD是矩形,
,,,
,
,
,
设,则,
在中,,
,
,
即,
,,,
≌,
,
,
,
,
,
由折叠的性质可得:,
,
,
,
,
故答案为.
【点睛】
本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.
12、1
【解析】
由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.
【详解】
解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,
∵AB∥CD,
∴∠1+∠3=180°,
∴∠1=180°﹣70°=1°,
故答案为1.
13、3.05×105
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
故答案为:.
【点睛】
本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.
14、
【解析】
利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可
【详解】
∵圆锥的底面圆的周长是,
∴圆锥的侧面扇形的弧长为 cm,
,
解得:
故答案为.
【点睛】
此题考查弧长的计算,解题关键在于求得圆锥的侧面积
15、2(m+2)(m-2)
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.
【详解】
2m2-8,
=2(m2-4),
=2(m+2)(m-2)
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.
16、1
【解析】
解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=1,故答案为1.
三、解答题(共8题,共72分)
17、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元
【解析】
(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
【详解】
解:(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.
答:购进A种树苗1棵,B种树苗2棵.
(2)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
12﹣x<x,解得:x>8.3.
∵购进A、B两种树苗所需费用为80x+60(12﹣x)=20x+120,是x的增函数,
∴费用最省需x取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.
18、(1)300人(2)b=0.15,c=0.2;(3)
【解析】
分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;
(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;
(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.
详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),
答:该校初三学生共有300人;
(2)由(1)得:a=300×0.3=90(人),
b==0.15,
c==0.2;
如图所示:
(3)画树形图得:
∵一共有12种情况,抽取到甲和乙的有2种,
∴P(抽到甲和乙)==.
点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.
19、小亮说的对,CE为2.6m.
【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
【详解】
解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
∵tan∠BAD=,
∴BD=10×tan18°,
∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
在△ABD中,∠CDE=90°﹣∠BAD=72°,
∵CE⊥ED,
∴sin∠CDE=,
∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
∵2.6m<2.7m,且CE⊥AE,
∴小亮说的对.
答:小亮说的对,CE为2.6m.
【点睛】
本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.
20、(1)∠ODE=90°;(2)∠A=45°.
【解析】
分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;
(Ⅱ)利用中位线的判定和定理解答即可.
详解:(Ⅰ)连接OE,BD.
∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.
∵E点是BC的中点,∴DE=BC=BE.
∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.
∵∠ABC=90°,∴∠ODE=90°;
(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.
∵OA=OD,∴∠A=∠ADO=.
点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.
21、1米.
【解析】
试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.
试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=1.
答:塔杆CH的高为1米.
点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
22、(1)答案见解析;(2).
【解析】
【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;
(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.
【详解】(1)10÷25%=40(人),
获一等奖人数:40-8-6-12-10=4(人),
补全条形图如图所示:
(2)七年级获一等奖人数:4×=1(人),
八年级获一等奖人数:4×=1(人),
∴ 九年级获一等奖人数:4-1-1=2(人),
七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,
九年级获一等奖的同学用P1 、P2表示,树状图如下:
共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,
则所选出的两人中既有七年级又有九年级同学的概率P=.
【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.
23、50千米/小时.
【解析】
根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.
【详解】
解:设货车的速度为x千米/小时,依题意得:
解:根据题意,得
.
解得:x=50
经检验x=50是原方程的解.
答:货车的速度为50千米/小时.
【点睛】
本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.
24、(1)见解析;(2)见解析;(3).
【解析】
(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;
(2)根据图形旋转的性质画出旋转后的图形即可;
(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.
【详解】
解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,
∴△ABC向右平移6个单位,向上平移了一个单位,
∴A1(4,4),B1(2,0),C1(8,1);
顺次连接A1,B1,C1三点得到所求的△A1B1C1
(2)如图所示:△A2B2C即为所求三角形.
(3)BC的长为:
BC扫过的面积
【点睛】
本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
相关试卷
这是一份浙江省金华市国际实验校2021-2022学年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,解分式方程时,去分母后变形为,已知m=,n=,则代数式的值为,-5的倒数是,抛物线的顶点坐标是等内容,欢迎下载使用。
这是一份江苏省无锡市锡山高级中学2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。
这是一份2021-2022学年江苏省无锡市新区重点名校中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了如图,已知点A,下列命题中,真命题是等内容,欢迎下载使用。

