|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省株洲市石峰区2022年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    湖南省株洲市石峰区2022年毕业升学考试模拟卷数学卷含解析01
    湖南省株洲市石峰区2022年毕业升学考试模拟卷数学卷含解析02
    湖南省株洲市石峰区2022年毕业升学考试模拟卷数学卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省株洲市石峰区2022年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份湖南省株洲市石峰区2022年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了下列各数中,最小的数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )
    A. B. C. D.
    2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是(  )
    A.a>b B.a<b
    C.a=b D.与m的值有关
    3.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是(  )
    A.本市明天将有的地区下雨 B.本市明天将有的时间下雨
    C.本市明天下雨的可能性比较大 D.本市明天肯定下雨
    4.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于(  )

    A. B. C. D.
    5.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于(  )

    A.40° B.45° C.50° D.60°
    6.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是(  )

    A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
    7.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )

    A.1 B.2 C.3 D.4
    8.下列各数中,最小的数是( )
    A.0 B. C. D.
    9.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是(  )

    A.点M B.点N C.点P D.点Q
    10.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
    A. B. C. D.
    11.在0,-2,5,,-0.3中,负数的个数是( ).
    A.1 B.2 C.3 D.4
    12.下列一元二次方程中,有两个不相等实数根的是(  )
    A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.

    14.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.
    15.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.

    16.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.
    17.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么 的值等于________.(结果保留两位小数)

    18.如图,点M是反比例函数(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为

    A.1 B.2 C.4 D.不能确定
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
    20.(6分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.

    21.(6分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:
    本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是   ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
    22.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)

    23.(8分)(1)解不等式组:;
    (2)解方程:.
    24.(10分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.

    25.(10分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.
    (1)求直线的表达式;
    (2)若直线与矩形有公共点,求的取值范围;
    (3)直线与矩形没有公共点,直接写出的取值范围.

    26.(12分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.
    (1)若CE=1,求BC的长;
    (1)求证:AM=DF+ME.

    27.(12分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0).
    求该抛物线的解析式;求梯形COBD的面积.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.
    【详解】
    解:∵点M的坐标是(4,3),
    ∴点M到x轴的距离是3,到y轴的距离是4,
    ∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
    ∴r的取值范围是3<r<4,
    故选:D.
    【点睛】
    本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.
    2、A
    【解析】
    【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
    【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
    所以,y随x的增大而减小.
    因为,1<4,
    所以,a>b.
    故选A
    【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
    3、C
    【解析】
    试题解析:根据概率表示某事情发生的可能性的大小,分析可得:
    A、明天降水的可能性为85%,并不是有85%的地区降水,错误;
    B、本市明天将有85%的时间降水,错误;
    C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;
    D、明天肯定下雨,错误.
    故选C.
    考点:概率的意义.
    4、B
    【解析】
    过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
    【详解】
    如图,过点P作PE⊥OA于点E,

    ∵OP是∠AOB的平分线,
    ∴PE=PM,
    ∵PN∥OB,
    ∴∠POM=∠OPN,
    ∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
    ∴=.
    故选:B.
    【点睛】
    本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
    5、C
    【解析】
    分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得∠C的度数.
    详解:∵AB∥CD,



    故选C.
    点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.
    6、B
    【解析】
    试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),
    所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.
    故选B.
    考点:二次函数的图象.106144
    7、B
    【解析】
    先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.
    【详解】
    解:在Rt△ABO中,sin∠OAB===,
    ∴∠OAB=60°,
    ∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,
    ∴∠CAB=30°,OC⊥AC,
    ∴∠OAC=60°﹣30°=30°,
    在Rt△OAC中,OC=OA=1.
    故选B.
    【点睛】
    本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.
    8、D
    【解析】
    根据实数大小比较法则判断即可.
    【详解】
    <0<1<,
    故选D.
    【点睛】
    本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
    9、D
    【解析】
    ∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
    ∴原点在点M与N之间,
    ∴这四个数中绝对值最大的数对应的点是点Q.
    故选D.
    10、C
    【解析】
    分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.
    解答:解:根据题意:2500000=2.5×1.
    故选C.
    11、B
    【解析】
    根据负数的定义判断即可
    【详解】
    解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
    故选B.
    12、B
    【解析】
    分析:根据一元二次方程根的判别式判断即可.
    详解:A、x2+6x+9=0.
    △=62-4×9=36-36=0,
    方程有两个相等实数根;
    B、x2=x.
    x2-x=0.
    △=(-1)2-4×1×0=1>0.
    方程有两个不相等实数根;
    C、x2+3=2x.
    x2-2x+3=0.
    △=(-2)2-4×1×3=-8<0,
    方程无实根;
    D、(x-1)2+1=0.
    (x-1)2=-1,
    则方程无实根;
    故选B.
    点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、这一天的最高气温约是26°
    【解析】
    根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
    【详解】
    解:根据图象可得这一天的最高气温约是26°,
    故答案为:这一天的最高气温约是26°.
    【点睛】
    本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    14、16或1
    【解析】
    题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    (1)当三角形的三边是5,5,6时,则周长是16;
    (2)当三角形的三边是5,6,6时,则三角形的周长是1;
    故它的周长是16或1.
    故答案为:16或1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
    15、1
    【解析】
    本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.
    【详解】
    ∵△BDE是正三角形,
    ∴∠DBE=60°;
    ∵在△ABC中,∠C=∠ABC,BE⊥AC,
    ∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;
    ∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,
    解得∠C=75°,
    ∴∠ABC=75°,
    ∴∠A=30°,
    ∵∠AED=90°-∠DEB=30°,
    ∴∠A=∠AED,
    ∴DE=AD=1,
    ∴BE=DE=1,
    故答案为:1.
    【点睛】
    本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.
    16、
    【解析】
    画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.
    【详解】
    解:画树状图如下:

    由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,
    所以两次摸到的球上数之和是负数的概率为,
    故答案为:.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    17、3.1
    【解析】
    分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.
    详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.
    故答案为3.1.
    点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.
    18、A
    【解析】
    可以设出M的坐标,的面积即可利用M的坐标表示,据此即可求解.
    【详解】
    设M的坐标是(m,n),则mn=2.
    则MN=m,的MN边上的高等于n.
    则的面积
    故选A.
    【点睛】
    考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元
    【解析】
    (1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
    (2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
    【详解】
    解:(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
    80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.
    答:购进A种树苗1棵,B种树苗2棵.
    (2)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
    12﹣x<x,解得:x>8.3.
    ∵购进A、B两种树苗所需费用为80x+60(12﹣x)=20x+120,是x的增函数,
    ∴费用最省需x取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元).
    答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.
    20、灯杆AB的长度为2.3米.
    【解析】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.设AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.
    【详解】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.

    由题意得:∠ADE=α,∠E=45°.
    设AF=x.
    ∵∠E=45°,∴EF=AF=x.
    在Rt△ADF中,∵tan∠ADF=,∴DF==.
    ∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.
    ∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.
    答:灯杆AB的长度为2.3米.
    【点睛】
    本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.
    21、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
    【解析】
    (1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
    (2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
    (3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
    【详解】
    解:(1)本次调查的学生有30÷20%=150人;
    (2)C类别人数为150﹣(30+45+15)=60人,
    补全条形图如下:

    (3)扇形统计图中C对应的中心角度数是360°×=144°
    故答案为144°
    (4)600×()=300(人),
    答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
    22、通信塔CD的高度约为15.9cm.
    【解析】
    过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.
    【详解】
    过点A作AE⊥CD于E,

    则四边形ABDE是矩形,
    设CE=xcm,
    在Rt△AEC中,∠AEC=90°,∠CAE=30°,
    所以AE=xcm,
    在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,
    DM=cm,
    在Rt△ABM中,BM=cm,
    ∵AE=BD,
    ∴,
    解得:x=+3,
    ∴CD=CE+ED=+9≈15.9(cm),
    答:通信塔CD的高度约为15.9cm.
    【点睛】
    本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.
    23、(1)﹣2≤x<2;(2)x=.
    【解析】
    (1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;
    (2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.
    【详解】
    (1),
    ∵解不等式①得:x<2,
    解不等式②得:x≥﹣2,
    ∴不等式组的解集为﹣2≤x<2;
    (2)方程两边都乘以(2x﹣1)(x﹣2)得
    2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),
    解得:x=,
    检验:把x=代入(2x﹣1)(x﹣2)≠0,
    所以x=是原方程的解,
    即原方程的解是x=.
    【点睛】
    本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.
    24、(1)(2)(-6,0)或(-2,0).
    【解析】
    分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
    详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
    (2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
    点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
    25、(1);(2);(3)
    【解析】
    (1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;
    (2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;
    (3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.
    【详解】
    解:
    (1)

    设直线表达式为,
    ,解得
    直线表达式为;
    (2) 直线可以看到是由直线平移得到,
    当直线过时,直线与矩形有一个公共点,如图1,

    当过点时,代入可得,解得.
    当过点时,可得
    直线与矩形有公共点时,的取值范围为;
    (3) ,
    直线过,且,
    如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,

    当过点时,代入可得,解得
    直线:与矩形没有公共点时的取值范围为
    【点睛】
    本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.
    26、 (1)1;(1)见解析.
    【解析】
    试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
    (1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.
    试题解析:(1)∵四边形ABCD是菱形,
    ∴AB∥CD,
    ∴∠1=∠ACD,
    ∵∠1=∠1,
    ∴∠ACD=∠1,
    ∴MC=MD,
    ∵ME⊥CD,
    ∴CD=1CE,
    ∵CE=1,
    ∴CD=1,
    ∴BC=CD=1;
    (1)AM=DF+ME
    证明:如图,

    ∵F为边BC的中点,
    ∴BF=CF=BC,
    ∴CF=CE,
    在菱形ABCD中,AC平分∠BCD,
    ∴∠ACB=∠ACD,
    在△CEM和△CFM中,
    ∵,
    ∴△CEM≌△CFM(SAS),
    ∴ME=MF,
    延长AB交DF的延长线于点G,
    ∵AB∥CD,
    ∴∠G=∠1,
    ∵∠1=∠1,
    ∴∠1=∠G,
    ∴AM=MG,
    在△CDF和△BGF中,

    ∴△CDF≌△BGF(AAS),
    ∴GF=DF,
    由图形可知,GM=GF+MF,
    ∴AM=DF+ME.
    27、(1)(2)
    【解析】
    (1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式.
    (2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积.
    【详解】
    (1)将A(―1,0)代入中,得:0=4a+4,解得:a=-1.
    ∴该抛物线解析式为.
    (2)对于抛物线解析式,令x=0,得到y=2,即OC=2,
    ∵抛物线的对称轴为直线x=1,∴CD=1.
    ∵A(-1,0),∴B(2,0),即OB=2.
    ∴.

    相关试卷

    2022年湖南省岳阳临湘市毕业升学考试模拟卷数学卷含解析: 这是一份2022年湖南省岳阳临湘市毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了如果将直线l1等内容,欢迎下载使用。

    2022届湖南省常德鼎城区七校联考毕业升学考试模拟卷数学卷含解析: 这是一份2022届湖南省常德鼎城区七校联考毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了在同一平面内,下列说法,下列计算正确的是,在平面直角坐标系中,将点P等内容,欢迎下载使用。

    2022届湖南省株洲市芦淞区重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022届湖南省株洲市芦淞区重点中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了下列判断错误的是,的相反数是,二元一次方程组的解是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map