|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届湖南省雅礼教育集团毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2022届湖南省雅礼教育集团毕业升学考试模拟卷数学卷含解析01
    2022届湖南省雅礼教育集团毕业升学考试模拟卷数学卷含解析02
    2022届湖南省雅礼教育集团毕业升学考试模拟卷数学卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖南省雅礼教育集团毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2022届湖南省雅礼教育集团毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了内角和为540°的多边形是,如图,两个反比例函数y1=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )

    A. B. C. D.
    2.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:
    (1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧
    (2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是(  )
    A.命题(1)与命题(2)都是真命题
    B.命题(1)与命题(2)都是假命题
    C.命题(1)是假命题,命题(2)是真命题
    D.命题(1)是真命题,命题(2)是假命题
    3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
    A. B.
    C. D.
    4.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )

    A.3.5 B.4 C.7 D.14
    5.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )

    A.4,30° B.2,60° C.1,30° D.3,60°
    6.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为(  )

    A.7 B.8 C.9 D.10
    7.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )
    A. B.
    C. D.
    8.内角和为540°的多边形是( )
    A. B. C. D.
    9.如图,下列条件不能判定△ADB∽△ABC的是( )

    A.∠ABD=∠ACB B.∠ADB=∠ABC
    C.AB2=AD•AC D.
    10.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为(  )

    A.:1 B.2: C.2:1 D.29:14
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知式子有意义,则x的取值范围是_____
    12.如图,已知O为△ABC内一点,点D、E分别在边AB和AC上,且,DE∥BC,设、,那么______(用、表示).

    13.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.

    14.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_____.

    15.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.

    16.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.

    17.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.

    19.(5分)解方程组
    20.(8分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
    (参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)

    21.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
    22.(10分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
    若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.
    23.(12分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经
    了解得到以下信息(如表):
    工程队
    每天修路的长度(米)
    单独完成所需天数(天)
    每天所需费用(元)
    甲队
    30
    n
    600
    乙队
    m
    n﹣14
    1160
    (1)甲队单独完成这项工程所需天数n=  ,乙队每天修路的长度m=  (米);
    (2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).
    ①当x=90时,求出乙队修路的天数;
    ②求y与x之间的函数关系式(不用写出x的取值范围);
    ③若总费用不超过22800元,求甲队至少先修了多少米.
    24.(14分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
    (1)求该抛物线的解析式;
    (2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
    (3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
    【详解】
    该几何体的俯视图是:.
    故选A.
    【点睛】
    此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
    2、C
    【解析】
    试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.
    (1)∵P(a,b)在y=上, ∴a和b同号,所以对称轴在y轴左侧,
    ∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.
    (2)∵函数y=的所有“派生函数”为y=ax2+bx, ∴x=0时,y=0,
    ∴所有“派生函数”为y=ax2+bx经过原点,
    ∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.
    考点:(1)命题与定理;(2)新定义型
    3、B
    【解析】
    设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
    【详解】
    解:设大马有匹,小马有匹,由题意得:

    故选:B.
    【点睛】
    本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
    4、A
    【解析】
    根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.
    【详解】
    解:∵菱形ABCD的周长为28,
    ∴AB=28÷4=7,OB=OD,
    ∵E为AD边中点,
    ∴OE是△ABD的中位线,
    ∴OE=AB=×7=3.1.
    故选:A.
    【点睛】
    本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
    5、B
    【解析】
    试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,
    ∴∠A′B′C=60°,AB=A′B′=A′C=4,
    ∴△A′B′C是等边三角形,
    ∴B′C=4,∠B′A′C=60°,
    ∴BB′=6﹣4=2,
    ∴平移的距离和旋转角的度数分别为:2,60°
    故选B.
    考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定
    6、C
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    根据三视图知,该几何体中小正方体的分布情况如下图所示:

    所以组成这个几何体的小正方体个数最多为9个,
    故选C.
    【点睛】
    考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
    7、C
    【解析】
    根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,
    故选C.
    点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.
    8、C
    【解析】
    试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.
    考点:多边形内角与外角.
    9、D
    【解析】
    根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.
    【详解】
    解:A、∵∠ABD=∠ACB,∠A=∠A,
    ∴△ABC∽△ADB,故此选项不合题意;
    B、∵∠ADB=∠ABC,∠A=∠A,
    ∴△ABC∽△ADB,故此选项不合题意;
    C、∵AB2=AD•AC,
    ∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;
    D、=不能判定△ADB∽△ABC,故此选项符合题意.
    故选D.
    【点睛】
    点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.
    10、A
    【解析】
    试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
    故选A.
    考点:反比例函数系数k的几何意义

    二、填空题(共7小题,每小题3分,满分21分)
    11、x≤1且x≠﹣1.
    【解析】
    根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.
    故答案为x≤1且x≠﹣1.
    12、
    【解析】
    根据,DE∥BC,结合平行线分线段成比例来求.
    【详解】
    ∵,DE∥BC,
    ∴,
    ∴ = =.
    ∵,

    ∴.
    故答案为:.
    【点睛】
    本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
    13、1
    【解析】
    设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;
    【详解】
    设抛物线的解析式为:y=ax2+b,
    由图得知:点(0,2.4),(1,0)在抛物线上,
    ∴,解得:,
    ∴抛物线的解析式为:y=﹣x2+2.4,
    ∵菜农的身高为1.8m,即y=1.8,
    则1.8=﹣x2+2.4,
    解得:x=(负值舍去)
    故他在不弯腰的情况下,横向活动范围是:1米,
    故答案为1.
    14、1
    【解析】
    根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.
    【详解】
    ∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.
    【点睛】
    本题考查面积的求解,解题的关键是读懂题意.
    15、1
    【解析】
    根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.
    【详解】
    解:∵△EBD由△ABC旋转而成,
    ∴△ABC≌△EBD,
    ∴BC=BD,∠EBD=∠ABC=30°,
    ∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,
    ∴;
    故答案为:1.
    【点睛】
    此题考查旋转的性质,即图形旋转后与原图形全等.
    16、630
    【解析】
    分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
    详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
    甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
    相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
    则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
    乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
    甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
    所以甲车从B地向A地行驶了120×2.25=270千米,
    当乙车到达A地时,甲车离A地的距离为900-270=630千米.
    点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
    17、
    【解析】
    如图作DH⊥AE于H,连接CG.设DG=x,

    ∵∠DCE=∠DEC,
    ∴DC=DE,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=90°,
    ∴DA=DE,
    ∵DH⊥AE,
    ∴AH=HE=DG,
    在△GDC与△GDE中,

    ∴△GDC≌△GDE(SAS),
    ∴GC=GE,∠DEG=∠DCG=∠DAF,
    ∵∠AFD=∠CFG,
    ∴∠ADF=∠CGF=90°,
    ∴2∠GDE+2∠DEG=90°,
    ∴∠GDE+∠DEG=45°,
    ∴∠DGH=45°,
    在Rt△ADH中,AD=8,AH=x,DH=x,
    ∴82=x2+(x)2,
    解得:x=,
    ∵△ADH∽△AFD,
    ∴,
    ∴AF==4.
    故答案为4.

    三、解答题(共7小题,满分69分)
    18、 (1)见解析;(2)2.
    【解析】
    (1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.
    【详解】
    (1)如图所示,点P即为所求.

    (2)设BP=x,则CP=1﹣x,
    由(1)中作图知AP=CP=1﹣x,
    在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,
    解得:x=2,
    所以BP=2.
    【点睛】
    考核知识点:勾股定理和线段垂直平分线.
    19、
    【解析】
    解:由①得③
    把③代入②得

    把代人③得
    ∴原方程组的解为
    20、49.2米
    【解析】
    设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
    【详解】
    解:设PD=x米,
    ∵PD⊥AB,∴∠ADP=∠BDP=90°.
    在Rt△PAD中,,∴.
    在Rt△PBD中,,∴.
    又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.
    ∴DB=2x=49.2米.
    答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.
    21、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
    (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
    【详解】
    (1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
    根据题意得:,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    ∴x+2=1.
    答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
    (2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
    根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
    解得:m≤2.
    答:这所学校最多可购买2个乙种足球.
    【点睛】
    本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.
    22、(1);(2)∠CDE=2∠A.
    【解析】
    (1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
    (2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
    【详解】
    (1)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    在Rt△ABC中,由勾股定理得:
    AB=
    =,
    ∴AO=AB=.
    ∵OD⊥AB,
    ∴∠AOE=∠ACB=90°,
    又∵∠A=∠A,
    ∴△AOE∽△ACB,
    ∴,
    ∴OE=
    =.
    (2)∠CDE=2∠A.理由如下:
    连结OC,
    ∵OA=OC,
    ∴∠1=∠A,
    ∵CD是⊙O的切线,
    ∴OC⊥CD,
    ∴∠OCD=90°,
    ∴∠2+∠CDE=90°,
    ∵OD⊥AB,
    ∴∠2+∠3=90°,
    ∴∠3=∠CDE.
    ∵∠3=∠A+∠1=2∠A,
    ∴∠CDE=2∠A.

    考点:切线的性质;探究型;和差倍分.
    23、(1)35,50;(2)①12;②y=﹣x+;③150米.
    【解析】
    (1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;
    (2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;
    ②由①中的相等关系可得y与x之间的函数关系式;
    ③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.
    【详解】
    解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),
    则乙单独完成所需天数为21天,
    ∴乙队每天修路的长度m=1050÷21=50(米),
    故答案为35,50;
    (2)①乙队修路的天数为=12(天);
    ②由题意,得:x+(30+50)y=1050,
    ∴y与x之间的函数关系式为:y=﹣x+;
    ③由题意,得:600×+(600+1160)(﹣x+)≤22800,
    解得:x≥150,
    答:若总费用不超过22800元,甲队至少先修了150米.
    【点睛】
    本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
    24、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
    【解析】
    试题分析:把点代入抛物线,求出的值即可.
    先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
    联立方程求出点的坐标, 最大值=,
    进而计算四边形EAPD面积的最大值;
    分两种情况进行讨论即可.
    试题解析:(1)∵在抛物线上,

    解得
    ∴抛物线的解析式为
    (2)过点P作轴交AD于点G,


    ∴直线BE的解析式为
    ∵AD∥BE,设直线AD的解析式为 代入,可得
    ∴直线AD的解析式为
    设则

    ∴当x=1时,PG的值最大,最大值为2,
    由 解得 或

    ∴ 最大值=

    ∵AD∥BE,

    ∴S四边形APDE最大=S△ADP最大+
    (3)①如图3﹣1中,当时,作于T.





    可得
    ②如图3﹣2中,当时,
    当时,
    当时,Q3
    综上所述,满足条件点点Q坐标为或或或

    相关试卷

    湖南省长沙市师大附中教育集团—重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份湖南省长沙市师大附中教育集团—重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是,下列计算正确的是,计算3a2-a2的结果是等内容,欢迎下载使用。

    杭州市锦绣育才教育科技集团2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份杭州市锦绣育才教育科技集团2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了下列四个命题,正确的有个等内容,欢迎下载使用。

    2022年重庆市兼善教育集团毕业升学考试模拟卷数学卷含解析: 这是一份2022年重庆市兼善教育集团毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣的结果为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map