年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    河南省周口市郸城县重点达标名校2022年中考数学全真模拟试题含解析

    河南省周口市郸城县重点达标名校2022年中考数学全真模拟试题含解析第1页
    河南省周口市郸城县重点达标名校2022年中考数学全真模拟试题含解析第2页
    河南省周口市郸城县重点达标名校2022年中考数学全真模拟试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省周口市郸城县重点达标名校2022年中考数学全真模拟试题含解析

    展开

    这是一份河南省周口市郸城县重点达标名校2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为,﹣3的绝对值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    2.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为(  )

    A. B.
    C. D.
    3.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )
    A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×1014
    4.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )

    A.(―1,2)
    B.(―9,18)
    C.(―9,18)或(9,―18)
    D.(―1,2)或(1,―2)
    5.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )

    A.1+ B.2+ C.2﹣1 D.2+1
    6.不等式组的解集在数轴上表示为( )
    A. B. C. D.
    7.下列式子中,与互为有理化因式的是(  )
    A. B. C. D.
    8.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为(  )

    A.13 B.17 C.18 D.25
    9.﹣3的绝对值是(  )
    A.﹣3 B.3 C.- D.
    10.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为(  )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.
    12.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n个图案中有__________张白色纸片.

    13.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:
    x

    -5
    -4
    -3
    -2
    -1

    y

    3
    -2
    -5
    -6
    -5

    则关于x的一元二次方程ax2+bx+c=-2的根是______.
    14.若反比例函数的图象与一次函数y=ax+b的图象交于点A(﹣2,m)、B(5,n),则3a+b的值等于_____.
    15.计算:2sin245°﹣tan45°=______.
    16.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为    . 

    三、解答题(共8题,共72分)
    17.(8分)请根据图中提供的信息,回答下列问题:

    (1)一个水瓶与一个水杯分别是多少元?
    (2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
    18.(8分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.

    19.(8分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
    求证:;
    求证:四边形BDFG为菱形;
    若,,求四边形BDFG的周长.

    20.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
    21.(8分)关于的一元二次方程有实数根.求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.
    22.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
    摸球总
    次数
    10
    20
    30
    60
    90
    120
    180
    240
    330
    450
    “和为8”出
    现的频数
    2
    10
    13
    24
    30
    37
    58
    82
    110
    150
    “和为8”出
    现的频率
    0.20
    0.50
    0.43
    0.40
    0.33
    0.31
    0.32
    0.34
    0.33
    0.33
    解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
    23.(12分)已知抛物线y=ax2+ c(a≠0).
    (1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;
    (2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);
    (3)若a>0,c 1;
    解不等式②得,x>2;
    ∴不等式组的解集为:x≥2,
    在数轴上表示为:

    故选A.
    【点睛】
    本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.
    7、B
    【解析】
    直接利用有理化因式的定义分析得出答案.
    【详解】
    ∵()(,)
    =12﹣2,
    =10,
    ∴与互为有理化因式的是:,
    故选B.
    【点睛】
    本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
    8、C
    【解析】
    在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.
    9、B
    【解析】
    根据负数的绝对值是它的相反数,可得出答案.
    【详解】
    根据绝对值的性质得:|-1|=1.
    故选B.
    【点睛】
    本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.
    10、C
    【解析】
    根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,
    即可得出a、b之间的关系式.
    【详解】
    ∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,
    ∴2014年我省财政收入为a(1+8.9%)亿元,
    ∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,
    ∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);
    故选C.
    【点睛】
    此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、120°
    【解析】
    设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.
    【详解】
    设扇形的半径为r,圆心角为n°.
    由题意:,
    ∴r=4,

    ∴n=120,
    故答案为120°
    【点睛】
    本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.
    12、13 3n+1
    【解析】
    分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.
    详解:∵第1个图案中有白色纸片3×1+1=4张
    第2个图案中有白色纸片3×2+1=7张,
    第3图案中有白色纸片3×3+1=10张,
    ∴第4个图案中有白色纸片3×4+1=13张
    第n个图案中有白色纸片3n+1张,
    故答案为:13、3n+1.
    点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.
    13、x1=-4,x1=2
    【解析】
    解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.
    点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.
    14、0
    【解析】
    分析:本题直接把点的坐标代入解析式求得之间的关系式,通过等量代换可得到的值.
    详解:分别把A(−2,m)、B(5,n),
    代入反比例函数的图象与一次函数y=ax+b得
    −2m=5n,−2a+b=m,5a+b=n,
    综合可知5(5a+b)=−2(−2a+b),
    25a+5b=4a−2b,
    21a+7b=0,
    即3a+b=0.
    故答案为:0.
    点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础.
    15、0
    【解析】
    原式==0,
    故答案为0.
    16、65°
    【解析】
    根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.
    【详解】
    根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,
    ∴∠CAD=25°;
    在△ADC中,∠C=90°,∠CAD=25°,
    ∴∠ADC=65°(直角三角形中的两个锐角互余);
    故答案是:65°.

    三、解答题(共8题,共72分)
    17、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
    【解析】
    (1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
    (2)计算出两商场得费用,比较即可得到结果.
    【详解】
    解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
    根据题意得:3x+4(48﹣x)=152,
    解得:x=40,
    则一个水瓶40元,一个水杯是8元;
    (2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
    乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
    则∵n>10,且n为整数,
    ∴160+6.4n﹣(120+8n)=40﹣1.6n
    讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
    ∴选择乙商场购买更合算.
    当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
    ∴选择甲商场购买更合算.
    【点睛】
    此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
    18、
    【解析】
    根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
    【详解】
    解:∵矩形沿直线AC折叠,点B落在点E处,
    ∴CE=BC,∠BAC=∠CAE,
    ∵矩形对边AD=BC,
    ∴AD=CE,
    设AE、CD相交于点F,
    在△ADF和△CEF中,

    ∴△ADF≌△CEF(AAS),
    ∴EF=DF,
    ∵AB∥CD,
    ∴∠BAC=∠ACF,
    又∵∠BAC=∠CAE,
    ∴∠ACF=∠CAE,
    ∴AF=CF,
    ∴AC∥DE,
    ∴△ACF∽△DEF,
    ∴,
    设EF=3k,CF=5k,
    由勾股定理得CE=,
    ∴AD=BC=CE=4k,
    又∵CD=DF+CF=3k+5k=8k,
    ∴AB=CD=8k,
    ∴AD:AB=(4k):(8k)=.

    【点睛】
    本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.
    19、(1)证明见解析(2)证明见解析(3)1
    【解析】
    利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
    利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
    设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
    【详解】
    证明:,,

    又为AC的中点,

    又,

    证明:,,
    四边形BDFG为平行四边形,
    又,
    四边形BDFG为菱形,
    解:设,则,,
    在中,,
    解得:,舍去,

    菱形BDFG的周长为1.
    【点睛】
    本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
    20、(1);(2)规则是公平的;
    【解析】
    试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
    (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
    试题解析:(1)画树状图为:

    共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
    所以P(小王)=;
    (2)不公平,理由如下:
    ∵P(小王)=,P(小李)=,≠,
    ∴规则不公平.
    点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1);(2)的值为.
    【解析】
    (1)利用判别式的意义得到,然后解不等式即可;
    (2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足.
    【详解】
    解:(1)根据题意得,
    解得;
    (2)的最大整数为2,
    方程变形为,解得,
    ∵一元二次方程与方程有一个相同的根,
    ∴当时,,解得;
    当时,,解得,
    而,
    ∴的值为.
    【点睛】
    本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
    22、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
    【解析】
    (1)利用频率估计概率结合表格中数据得出答案即可;
    (2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
    【详解】
    解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
    故出现“和为8”的概率是0.33.
    (2)x的值不能为7.理由:假设x=7,

    则P(和为9)=≠,所以x的值不能为7.
    【点睛】
    此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
    23、(1);(2)详见解析;(3)为定值,=
    【解析】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),用待定系数法求解即可;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直线AB的解析式即可得到结论;
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    由PQ∥ON,可得ON=amt+at2,OM= –amt+at2,然后把ON,OM,OC的值代入整理即可.
    【详解】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),

    解之得

    ∴;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),

    ∵OA⊥OB,
    ∴∠AOE=∠OBF,
    ∴△AOE∽△OBF,
    ∴,,,
    直线AB过点A(m,am2)、点B(n,an2),
    ∴过点(0,);
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    ∵PQ∥ON,

    ∴,
    ON=====at(m+t)= amt+at2,
    同理:OM= –amt+at2,
    所以,OM+ON= 2at2=–2c=OC,
    所以,=.
    【点睛】
    本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.
    24、a2+2a,2
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.
    【详解】
    解:


    =a(a+2)
    =a2+2a,
    ∵a2+2a﹣2=2,
    ∴a2+2a=2,
    ∴原式=2.
    【点睛】
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.

    相关试卷

    重庆开州区重点达标名校2021-2022学年中考数学全真模拟试题含解析:

    这是一份重庆开州区重点达标名校2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式,最简二次根式是,﹣2的绝对值是,下列解方程去分母正确的是等内容,欢迎下载使用。

    湖北宜昌重点达标名校2022年中考数学全真模拟试题含解析:

    这是一份湖北宜昌重点达标名校2022年中考数学全真模拟试题含解析,共16页。试卷主要包含了答题时请按要求用笔,计算 的结果为等内容,欢迎下载使用。

    河南省周口市郸城县重点达标名校2021-2022学年中考数学押题试卷含解析:

    这是一份河南省周口市郸城县重点达标名校2021-2022学年中考数学押题试卷含解析,共18页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map