|试卷下载
搜索
    上传资料 赚现金
    河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析
    立即下载
    加入资料篮
    河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析01
    河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析02
    河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析

    展开
    这是一份河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了单项式2a3b的次数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是  

    A. B. C. D.
    2.的负倒数是(  )
    A. B.- C.3 D.﹣3
    3.下列计算正确的是(  )
    A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6
    C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy
    4.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是(  )

    A.0.5 B.1 C.3 D.π
    5.已知方程的两个解分别为、,则的值为()
    A. B. C.7 D.3
    6.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为(  )

    A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
    7.如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    8.单项式2a3b的次数是(  )
    A.2 B.3 C.4 D.5
    9.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    成绩






    人数
    2
    3
    2
    3
    4
    1
    则这些运动员成绩的中位数、众数分别为  
    A.、 B.、 C.、 D.、
    10.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )

    A. B. C. D.
    11.图中三视图对应的正三棱柱是( )

    A. B. C. D.
    12.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为(   )
    A.﹣1 B.0 C.1 D.3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.

    14.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为
    15.若分式方程有增根,则m的值为______.
    16.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.

    17.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________

    18.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知在中,,是的平分线.

    (1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)
    (2)判断直线与的位置关系,并说明理由.
    20.(6分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.





    单价(元/米2)



    (1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
    ①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
    ②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
    21.(6分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
    (1)求证:△ACE≌△BCD;
    (2)若DE=13,BD=12,求线段AB的长.

    22.(8分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=

    (1)求a,k的值及点B的坐标;
    (2)观察图象,请直接写出不等式ax﹣1≥的解集;
    (3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
    23.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.

    24.(10分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    25.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.

    26.(12分)解不等式组,
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得_____;
    (2)解不等式②,得_____;
    (3)把不等式①和②的解集在数轴上表示出来;
    (4)原不等式组的解集为_____.

    27.(12分)问题提出
    (1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;
    问题探究
    (2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;
    问题解决
    (3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.
    【详解】
    A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;
    B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;
    C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;
    D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.
    故选C.
    【点睛】
    本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.
    2、D
    【解析】
    根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.
    【详解】
    根据倒数的定义得:2×=1.
    因此的负倒数是-2.
    故选D.
    【点睛】
    本题考查了倒数,解题的关键是掌握倒数的概念.
    3、D
    【解析】
    A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.
    【详解】
    A.-2x-2y3×2x3y=-4xy4,故本选项错误;
    B. (−2a2)3=−8a6,故本项错误;
    C. (2a+1)(2a−1)=4a2−1,故本项错误;
    D.35x3y2÷5x2y=7xy,故本选项正确.
    故答案选D.
    【点睛】
    本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.
    4、C
    【解析】
    连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.
    【详解】
    连接OC、OD,

    ∵六边形ABCDEF是正六边形,
    ∴∠COD=60°,又OC=OD,
    ∴△COD是等边三角形,
    ∴OC=CD,
    正六边形的周长:圆的直径=6CD:2CD=3,
    故选:C.
    【点睛】
    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.
    5、D
    【解析】
    由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.
    【详解】
    解:∵方程x2−5x+2=0的两个解分别为x1,x2,
    ∴x1+x2=5,x1•x2=2,
    ∴x1+x2−x1•x2=5−2=1.
    故选D.
    【点睛】
    本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.
    6、D
    【解析】
    解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.

    点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
    7、A
    【解析】
    画出从正面看到的图形即可得到它的主视图.
    【详解】
    这个几何体的主视图为:

    故选:A.
    【点睛】
    本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
    8、C
    【解析】
    分析:根据单项式的性质即可求出答案.
    详解:该单项式的次数为:3+1=4
    故选C.
    点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.
    9、C
    【解析】
    根据中位数和众数的概念进行求解.
    【详解】
    解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
    众数为:1.75;
    中位数为:1.1.
    故选C.
    【点睛】
    本题考查1.中位数;2.众数,理解概念是解题关键.
    10、B
    【解析】
    根据俯视图是从上往下看的图形解答即可.
    【详解】
    从上往下看到的图形是:
    .
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    11、A
    【解析】
    由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解
    【详解】
    解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.
    故选A.
    【点睛】
    本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.
    12、D
    【解析】
    分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.
    详解:由题意得,
    (-4)2-4(c+1)=0,
    c=3.
    故选D.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、10或1
    【解析】
    分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.
    【详解】
    如图,作半径于C,连接OB,

    由垂径定理得:=AB=×60=30cm,
    在中,,
    当水位上升到圆心以下时  水面宽80cm时,
    则,
    水面上升的高度为:;
    当水位上升到圆心以上时,水面上升的高度为:,
    综上可得,水面上升的高度为30cm或1cm,
    故答案为:10或1.
    【点睛】
    本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.
    14、
    【解析】
    因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.
    15、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
    【详解】
    方程两边都乘(x-1),得
    x-1(x-1)=-m
    ∵原方程增根为x=1,
    ∴把x=1代入整式方程,得m=-1,
    故答案为:-1.
    【点睛】
    本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
    16、
    【解析】
    解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
    ∴DG=DC﹣CG=1,则AG==,
    ∵ ,∠ABG=∠CBE,
    ∴△ABG∽△CBE,
    ∴,
    解得,CE=,
    故答案为.

    【点睛】
    本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.
    17、1
    【解析】
    分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
    详解:设D(a,),
    ∵点D为矩形OABC的AB边的中点,
    ∴B(2a,),
    ∴E(2a,),
    ∵△BDE的面积为1,
    ∴•a•(-)=1,解得k=1.
    故答案为1.
    点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
    18、=
    【解析】
    探究规律后,写出第n个等式即可求解.
    【详解】
    解:



    则第n个等式为
    故答案为:
    【点睛】
    本题主要考查二次根式的应用,找到规律是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)见解析;(2)与相切,理由见解析.
    【解析】
    (1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
    (2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.
    【详解】
    (1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,
    ②作直线,与相交于点,
    ③以为圆心,为半径作圆,如图即为所作;

    (2)与相切,理由如下:
    连接OD,
    为半径,

    是等腰三角形,

    平分,






    为半径,
    与相切.
    【点睛】
    本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.
    20、(1)8m2;(2)68m2;(3) 40,8
    【解析】
    (1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
    (2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
    (3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
    【详解】
    (1) ∵为长方形和菱形的对称中心,,∴
    ∵,,∴
    ∴当时,,
    (2)∵,
    ∴-,
    ∵,,
    ∴解不等式组得,
    ∵,结合图像,当时,随的增大而减小.
    ∴当时, 取得最大值为
    (3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
    【点睛】
    本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
    21、(3)证明见解析; (3)AB=3.
    【解析】
    (3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;
    (3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.
    【详解】
    证明:(3)如图,

    ∵△ACB与△ECD都是等腰直角三角形,
    ∴AC=BC,CE=CD,
    ∵∠ACB=∠ECD=90°,
    ∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
    ∴∠BCD=∠ACE,在△BCD和△ACE中,
    ∵BC=AC,∠BCD=∠ACE,CD=CE,
    ∴△BCD≌△ACE(SAS);
    (3)由(3)知△BCD≌△ACE,
    则∠DBC=∠EAC,AE=BD=33,
    ∵∠CAD+∠DBC=90°,
    ∴∠EAC+∠CAD=90°,即∠EAD=90°,
    ∵AE=33,ED=33,
    ∴AD==5,
    ∴AB=AD+BD=33+5=3.
    【点睛】
    本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.

    考点:3.全等三角形的判定与性质;3.等腰直角三角形.
    22、(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
    【解析】
    1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;
    (2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;
    (3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.
    【详解】
    解:(1)
    过A作AE⊥x轴,交x轴于点E,
    在Rt△AOE中,OA=,tan∠AOC=,
    设AE=x,则OE=3x,
    根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
    解得:x=1或x=﹣1(舍去),
    ∴OE=3,AE=1,即A(3,1),
    将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,
    将A坐标代入反比例解析式得:1=,即k=3,
    联立一次函数与反比例解析式得:,
    消去y得: x﹣1=,
    解得:x=﹣或x=3,
    将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
    (2)由A(3,1),B(﹣,﹣2),
    根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;
    (3)显然P与O重合时,△PDC∽△ODC;
    当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,
    ∵∠PCD=∠COD=90°,∠PCD=∠CDO,
    ∴△PDC∽△CDO,
    ∵∠PCO+∠CPO=90°,
    ∴∠DCO=∠CPO,
    ∵∠POC=∠COD=90°,
    ∴△PCO∽△CDO,
    ∴=,
    对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
    ∴C(,0),D(0,﹣1),即OC=,OD=1,
    ∴=,即OP=,
    此时P坐标为(0,),
    综上,满足题意P的坐标为(0,)或(0,0).
    【点睛】
    此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.
    23、 (1)证明见解析;(2).
    【解析】
    (1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;
    (2)根据含30°的直角三角形的性质、正切的定义计算即可.
    【详解】
    (1)∵AB是⊙O直径,BC⊥AB,
    ∴BC是⊙O的切线,
    ∵CD切⊙O于点D,
    ∴BC=CD;
    (2)连接BD,
    ∵BC=CD,∠C=60°,
    ∴△BCD是等边三角形,
    ∴BD=BC=3,∠CBD=60°,
    ∴∠ABD=30°,
    ∵AB是⊙O直径,
    ∴∠ADB=90°,
    ∴AD=BD•tan∠ABD=.

    【点睛】
    本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    24、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    25、证明见解析.
    【解析】
    【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.
    【详解】∵BE=CF,
    ∴BE+EF=CF+EF,
    ∴BF=CE,
    在△ABF和△DCE中

    ∴△ABF≌△DCE(SAS),
    ∴∠GEF=∠GFE,
    ∴EG=FG.
    【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
    26、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.
    【解析】
    根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
    【详解】
    解:(1)解不等式①,得x>1;
    (1)解不等式②,得 x≤1;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为:1<x≤1.
    【点睛】
    本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
    27、(1);(2);(2)小贝的说法正确,理由见解析,.
    【解析】
    (1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;
    (2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;
    (1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.
    【详解】
    解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.

    ∵△DCE为等边三角形,
    ∴ED=EC,
    ∵OD=OC
    ∴OE垂直平分DC,
    ∴DHDC=1.
    ∵四边形ABCD为正方形,
    ∴△OHD为等腰直角三角形,
    ∴OH=DH=1,
    在Rt△DHE中,
    HEDH=1,
    ∴OE=HE+OH=11;
    (2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,

    在Rt△AOD中,AD=6,DO=1,
    ∴AO1,

    ∴AP=AO+OP=11;
    (1)小贝的说法正确.理由如下,
    如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,

    由题意知,点N为AD的中点,,
    ∴ANAD=1.6,ON⊥AD,
    在Rt△ANO中,
    设AO=r,则ON=r﹣1.2.
    ∵AN2+ON2=AO2,
    ∴1.62+(r﹣1.2)2=r2,
    解得:r,
    ∴AE=ON1.2,
    在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,
    ∴BO,
    ∴BP=BO+PO,
    ∴门角B到门窗弓形弧AD的最大距离为.
    【点睛】
    本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.

    相关试卷

    河南省郑州枫杨外国语中学2022年中考联考数学试卷含解析: 这是一份河南省郑州枫杨外国语中学2022年中考联考数学试卷含解析,共24页。试卷主要包含了已知,下列各式中,正确的是,已知二次函数y=3等内容,欢迎下载使用。

    2022届河南省郑州枫杨外国语中学中考数学模拟预测题含解析: 这是一份2022届河南省郑州枫杨外国语中学中考数学模拟预测题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。

    2021-2022学年河南省郑州市郑州枫杨外国语校中考联考数学试卷含解析: 这是一份2021-2022学年河南省郑州市郑州枫杨外国语校中考联考数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-3的相反数是,函数y=中自变量x的取值范围是,学校小组名同学的身高等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map