![2022-2023九年级数学上学期期末复习培优练习-第22、23章+一元二次方程、旋转选择、填空题-(辽宁中考)01](http://img-preview.51jiaoxi.com/2/3/13529025/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023九年级数学上学期期末复习培优练习-第22、23章+一元二次方程、旋转选择、填空题-(辽宁中考)02](http://img-preview.51jiaoxi.com/2/3/13529025/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023九年级数学上学期期末复习培优练习-第22、23章+一元二次方程、旋转选择、填空题-(辽宁中考)03](http://img-preview.51jiaoxi.com/2/3/13529025/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022-2023九年级数学上学期期末复习培优练习-第22、23章+一元二次方程、旋转选择、填空题-(辽宁中考)
展开2022-2023九年级数学上学期期末复习培优练习-第22、23章 一元二次方程、旋转选择、填空题-(辽宁中考)
一.选择题(共12小题)
1.(2022•阜新)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是( )
A.点(0,2)在函数图象上 B.开口方向向上
C.对称轴是直线x=1 D.与直线y=3x有两个交点
2.(2022•朝阳)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点(﹣1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是( )
A.abc>0
B.3a+c>0
C.a2m2+abm≤a2+ab(m为任意实数)
D.﹣1<a<﹣
3.(2022•丹东)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4.(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是( )
A.2 B.3 C.4 D.5
5.(2021•阜新)如图,二次函数y=a(x+2)2+k的图象与x轴交于A,B(﹣1,0)两点,则下列说法正确的是( )
A.a<0
B.点A的坐标为(﹣4,0)
C.当x<0时,y随x的增大而减小
D.图象的对称轴为直线x=﹣2
6.(2021•丹东)已知抛物线y=ax2+bx+c(a>0),且a+b+c=﹣,a﹣b+c=﹣.判断下列结论:①abc<0;②2a+2b+c>0;③抛物线与x轴正半轴必有一个交点;④当2≤x≤3时,y最小=3a;⑤该抛物线与直线y=x﹣c有两个交点,其中正确结论的个数( )
A.2 B.3 C.4 D.5
7.(2020•阜新)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )
A.图象的开口向上
B.图象的顶点坐标是(1,3)
C.当x<1时,y随x的增大而增大
D.图象与x轴有唯一交点
8.(2020•大连)抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )
A.(,0) B.(3,0) C.(,0) D.(2,0)
9.(2020•辽宁)如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是( )
A.1 B.2 C.3 D.4
10.(2022•丹东)如图,在四边形ABCD中,AB∥CD,AB=CD,对角线AC与BD交于点O,点E是AD的中点,连接OE,△ABD的周长为12cm,则下列结论错误的是( )
A.OE∥AB
B.四边形ABCD是中心对称图形
C.△EOD的周长等于3cm
D.若∠ABC=90°,则四边形ABCD是轴对称图形
11.(2022•辽宁)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
12.(2022•辽宁)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
二.填空题(共5小题)
13.(2022•锦州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣1,0)和点(2,0),以下结论:①abc<0;②4a﹣2b+c<0;③a+b=0;④当x<时,y随x的增大而减小.其中正确的结论有 .(填写代表正确结论的序号)
14.(2021•沈阳)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为 元时,才能使每天所获销售利润最大.
15.(2020•朝阳)抛物线y=(k﹣1)x2﹣x+1与x轴有交点,则k的取值范围是 .
16.(2022•朝阳)如图,在矩形ABCD中,AD=2,DC=4,将线段DC绕点D按逆时针方向旋转,当点C的对应点E恰好落在边AB上时,图中阴影部分的面积是 .
17.(2022•盘锦)如图,在△ABC中,AB=AC,∠ABC=30°,点D为BC的中点,将△ABC绕点D逆时针旋转得到△A'B'C',当点A的对应点A'落在边AB上时,点C'在BA的延长线上,连接BB',若AA'=1,则△BB'D的面积是 .
2022-2023九年级数学上学期期末复习培优练习-第22、23章 一元二次方程、旋转选择、填空题-(辽宁中考)
参考答案与试题解析
一.选择题(共12小题)
1.(2022•阜新)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是( )
A.点(0,2)在函数图象上 B.开口方向向上
C.对称轴是直线x=1 D.与直线y=3x有两个交点
【解答】解:A、把x=0代入y=3(x+1)(2﹣x),
得y=6≠2,
∴A错误;
B、化简二次函数:y=﹣3x2+3x+6,
∵a=﹣3<0,
∴二次函数的图象开口方向向下,
∴B错误;
C、∵二次函数对称轴是直线x=﹣
=,
∴C错误;
D、∵3(x+1)(2﹣x)=3x,
∴﹣3x2+3x+6=3x,
∴﹣3x2+6=0,
∵b2﹣4ac=72>0,
∴二次函数y=3(x+1)(2﹣x)的图象与直线y=3x有两个交点,
∴D正确;
故选:D.
2.(2022•朝阳)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点(﹣1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是( )
A.abc>0
B.3a+c>0
C.a2m2+abm≤a2+ab(m为任意实数)
D.﹣1<a<﹣
【解答】解:A.抛物线的对称轴在y轴右侧,则ab<0,而c>0,
故abc<0,不正确,不符合题意;
B.函数的对称轴为直线x=﹣=1,则b=﹣2a,
∵从图象看,当x=﹣1时,y=a﹣b+c=3a+c=0,
故不正确,不符合题意;
C.∵当x=1时,函数有最大值为y=a+b+c,
∴am2+bm+c≤a+b+c(m为任意实数),
∴am2+bm≤a+b,
∵a<0,
∴a2m2+abm≥a2+ab(m为任意实数)
故不正确,不符合题意;
D.∵﹣=1,故b=﹣2a,
∵x=﹣1,y=0,故a﹣b+c=0,
∴c=﹣3a,
∵2<c<3,
∴2<﹣3a<3,
∴﹣1<a<﹣,故正确,符合题意;
故选:D.
3.(2022•丹东)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵抛物线开口向上,
∴a>0,
∵对称轴是直线x=2,
∴﹣=2,
∴b=﹣4a<0
∵抛物线交y轴的负半轴,
∴c<0,
∴abc>0,故①正确,
∵b=﹣4a,a>0,
∴b+3a=﹣a<0,故②正确,
观察图象可知,当0<x≤2时,y随x的增大而减小,故③错误,
一次函数y=kx+b(k≠0)的图象经过点A,
∵b<0,
∴k>0,此时E(k,b)在第四象限,故④正确.
∵抛物线经过(﹣1,0),(5,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,
∴M(2,﹣9a),C(0,﹣5a),
过点M作MH⊥y轴于点H,设对称轴交x轴于点K.
∵AM⊥CM,
∴∠AMC=∠KMH=90°,
∴∠CMH=∠KMA,
∵∠MHC=∠MKA=90°,
∴△MHC∽△MKA,
∴=,
∴=,
∴a2=,
∵a>0,
∴a=,故⑤正确,
故选:D.
4.(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是( )
A.2 B.3 C.4 D.5
【解答】解:∵抛物线的开口方向向下,
∴a<0.
∵抛物线的对称轴为直线x=﹣1,
∴﹣=﹣1,
∴b=2a,b<0.
∵a<0,b<0,
∴ab>0,
∴①的结论正确;
∵抛物线y=ax2+bx+c经过点(﹣3,0),
∴9a﹣3b+c=0,
∴9a﹣3×2a+c=0,
∴3a+c=0.
∴4a+c=a<0,
∴②的结论不正确;
∵抛物线的对称轴为直线x=﹣1,
∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),
∵a<0,
∴当x>﹣1时,y随x的增大而减小.
∵>0>﹣1,
∴y1>y2.
∴③的结论不正确;
∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),
∴抛物线一定经过点(1,0),
∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,
∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,
∴④的结论正确;
∵直线y=kx+c经过点(﹣3,0),
∴﹣3k+c=0,
∴c=3k.
∵3a+c=0,
∴c=﹣3a,
∴3k=﹣3a,
∴k=﹣a.
∴函数y=ax2+(b﹣k)x
=ax2+(2a+a)x
=ax2+3ax
=a﹣a,
∵a<0,
∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,
∴⑤的结论不正确.
综上,结论正确的有:①④,
故选:A.
5.(2021•阜新)如图,二次函数y=a(x+2)2+k的图象与x轴交于A,B(﹣1,0)两点,则下列说法正确的是( )
A.a<0
B.点A的坐标为(﹣4,0)
C.当x<0时,y随x的增大而减小
D.图象的对称轴为直线x=﹣2
【解答】解:∵二次函数y=a(x+2)2+k的图象开口方向向上,
∴a>0,
故A错误,
∵图象对称轴为直线x=﹣2,且过B(﹣1,0),
∴A点的坐标为(﹣3,0),
故B错误,D正确,
由图象知,当x<0时,由图象可知y随x的增大先减小后增大,
故C错误,
故选:D.
6.(2021•丹东)已知抛物线y=ax2+bx+c(a>0),且a+b+c=﹣,a﹣b+c=﹣.判断下列结论:①abc<0;②2a+2b+c>0;③抛物线与x轴正半轴必有一个交点;④当2≤x≤3时,y最小=3a;⑤该抛物线与直线y=x﹣c有两个交点,其中正确结论的个数( )
A.2 B.3 C.4 D.5
【解答】解:∵a+b+c=﹣,a﹣b+c=﹣,
∴两式相减得b=,两式相加得c=﹣1﹣a,
∴c<0,
∵a>0,b>0,c<0,
∴abc<0,故①正确;
∴2a+2b+c=2a+2×﹣1﹣a=a>0,故②正确;
∵当x=1时,则y=a+b+c=﹣,当x=﹣1时,则有y=a﹣b+c=﹣,
∴当y=0时,则方程ax2+bx+c=0的两个根一个小于﹣1,一个根大于1,
∴抛物线与x轴正半轴必有一个交点,故③正确;
由题意知抛物线的对称轴为直线x==,
∴当2≤x≤3时,y随x的增大而增大,
∴当x=2时,有最小值,即为y=4a+2b+c=4a+1﹣1﹣a=3a,故④正确;
联立抛物线y=ax2+bx+c及直线y=x﹣c可得:x﹣c=ax2+bx+c,整理得:,
∴Δ=,
∴该抛物线与直线y=x﹣c有两个交点,故⑤正确;
∴正确的个数有5个;
故选:D.
7.(2020•阜新)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )
A.图象的开口向上
B.图象的顶点坐标是(1,3)
C.当x<1时,y随x的增大而增大
D.图象与x轴有唯一交点
【解答】解:∵y=﹣x2+2x+4=﹣(x﹣1)2+5,
∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x=1,当x<1时,y随x的增大而增大,
令y=0,则﹣x2+2x+4=0,解方程解得x1=1+,x2=1﹣,
∴△=4﹣4×(﹣1)×4=20>0,
∴抛物线与x轴有两个交点.
故选:C.
8.(2020•大连)抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )
A.(,0) B.(3,0) C.(,0) D.(2,0)
【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,
根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,
即x2﹣1=2,得x2=3,
∴抛物线与x轴的另一个交点为(3,0),
故选:B.
9.(2020•辽宁)如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是( )
A.1 B.2 C.3 D.4
【解答】解:①根据抛物线开口向下可知:
a<0,
因为对称轴在y轴右侧,
所以b>0,
因为抛物线与y轴正半轴相交,
所以c>0,
所以abc<0,
所以①错误;
②因为抛物线对称轴是直线x=1,
即﹣=1,
所以b=﹣2a,
所以b+2a=0,
所以②正确;
③∵b=﹣2a,
∴b2=4a2,
如果4a+b2<4ac,
那么4a+4a2<4ac,
∵a<0,
∴c<1+a,
而根据抛物线与y轴的交点,可知c>1,
∴结论③错误;
④当x=﹣1时,y<0,
即a﹣b+c<0,
因为b=﹣2a,
所以3a+c<0,
所以④正确.
所以正确的是②④,共2个.
故选:B.
10.(2022•丹东)如图,在四边形ABCD中,AB∥CD,AB=CD,对角线AC与BD交于点O,点E是AD的中点,连接OE,△ABD的周长为12cm,则下列结论错误的是( )
A.OE∥AB
B.四边形ABCD是中心对称图形
C.△EOD的周长等于3cm
D.若∠ABC=90°,则四边形ABCD是轴对称图形
【解答】解:∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵对角线AC与BD交于点O,点E是AD的中点,
∴OE是△ABD的中位线,
∴OE∥AB,
∴A选项结论正确,不符合题意;
∵四边形ABCD是中心对称图形,
∴B选项结论正确,不符合题意;
∵△ABD的周长为12cm,
∴△EOD的周长等于6cm,
∴C选项结论错误,符合题意;
若∠ABC=90°,则四边形ABCD是矩形,是轴对称图形,
∴D选项结论正确,不符合题意;
故选:C.
11.(2022•辽宁)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.既是中心对称图形,也是轴对称图形,故此选项符合题意;
D.是中心对称图形,不是轴对称图形,故此选项不合题意;
故选:C.
12.(2022•辽宁)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.是中心对称图形,不是轴对称图形,故此选项不合题意;
D.是中心对称图形,也是轴对称图形,故此选项符合题意;
故选:D.
二.填空题(共5小题)
13.(2022•锦州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣1,0)和点(2,0),以下结论:①abc<0;②4a﹣2b+c<0;③a+b=0;④当x<时,y随x的增大而减小.其中正确的结论有 ①②③ .(填写代表正确结论的序号)
【解答】解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故正确;
②x=﹣2时,函数值小于0,则4a﹣2b+c<0,故正确;
③与x轴交于点(﹣1,0)和点(2,0),则对称轴,故a+b=0,故③正确;
④当时,图像位于对称轴左边,y随x的增大而减大.故④错误;
综上所述,正确的为①②③.
故答案为:①②③.
14.(2021•沈阳)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为 11 元时,才能使每天所获销售利润最大.
【解答】解:设销售单价定为x元(x≥9),每天所获利润为y元,
则y=[20﹣4(x﹣9)]•(x﹣8)
=﹣4x2+88x﹣448
=﹣4(x﹣11)2+36,
所以将销售定价定为11元时,才能使每天所获销售利润最大,
故答案为11.
15.(2020•朝阳)抛物线y=(k﹣1)x2﹣x+1与x轴有交点,则k的取值范围是 k≤且k≠1 .
【解答】解:∵抛物线y=(k﹣1)x2﹣x+1与x轴有交点,
∴△=(﹣1)2﹣4×(k﹣1)×1≥0,解得k≤,
又∵k﹣1≠0,
∴k≠1,
∴k的取值范围是k≤且k≠1;
故答案为:k≤且k≠1.
16.(2022•朝阳)如图,在矩形ABCD中,AD=2,DC=4,将线段DC绕点D按逆时针方向旋转,当点C的对应点E恰好落在边AB上时,图中阴影部分的面积是 24﹣6﹣4π .
【解答】解:∵将线段DC绕点D按逆时针方向旋转,
∴DE=DC=4,
∵cos∠ADE===,
∴∠ADE=60°,
∴∠EDC=30°,
∴S扇形EDC==4π,
∵AE===6,
∴BE=AB﹣AE=4﹣6,
∵四边形ABCD是矩形,
∴EB∥CD,∠B=∠DCB=90°,
∵EB≠CB,
∴四边形DCBE是直角梯形,
∴S四边形DCBE==24﹣6,
∴阴影部分的面积=24﹣6﹣4π,
故答案为:24﹣6﹣4π.
17.(2022•盘锦)如图,在△ABC中,AB=AC,∠ABC=30°,点D为BC的中点,将△ABC绕点D逆时针旋转得到△A'B'C',当点A的对应点A'落在边AB上时,点C'在BA的延长线上,连接BB',若AA'=1,则△BB'D的面积是 .
【解答】解:如图所示,设A'B'与BD交于点O,连接A'D和AD,
∵点D为BC的中点,AB=AC,∠ABC=30°,
∴AD⊥BC,A'D⊥B'C',A'D是∠B′A′C′的角平分线,AD是∠BAC的角平分线,
∴∠B'A'C'=120°,∠BAC=120°,
∴∠BAD=∠B'A'D=60°,
∵A'D=AD,
∴△A'AD是等边三角形,
∴A'A=AD=A'D=1,
∵∠BA'B'=180°﹣∠B'A'C'=60°,
∴∠BA'B'=∠A'AD,
∴A'B'∥AD,
∴A′O⊥BC,
∴,
∴,
∵A'B'=2A'D=2,
∵∠A'BD=∠A'DO=30°,
∴BO=OD,
∴,,
∴.
2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式+选择、填空题+(辽宁中考): 这是一份2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式+选择、填空题+(辽宁中考),共9页。
第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州): 这是一份第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共18页。试卷主要包含了的图象如图所示,有下列5个结论等内容,欢迎下载使用。
第21、22章+一元二次方程、二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(内蒙古): 这是一份第21、22章+一元二次方程、二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(内蒙古),共16页。