|试卷下载
搜索
    上传资料 赚现金
    2022-2023九年级数学上学期期末复习培优练习-第24章圆 -选择、填空题(辽宁中考)
    立即下载
    加入资料篮
    2022-2023九年级数学上学期期末复习培优练习-第24章圆 -选择、填空题(辽宁中考)01
    2022-2023九年级数学上学期期末复习培优练习-第24章圆 -选择、填空题(辽宁中考)02
    2022-2023九年级数学上学期期末复习培优练习-第24章圆 -选择、填空题(辽宁中考)03
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023九年级数学上学期期末复习培优练习-第24章圆 -选择、填空题(辽宁中考)

    展开
    这是一份2022-2023九年级数学上学期期末复习培优练习-第24章圆 -选择、填空题(辽宁中考),共36页。

    2022-2023九年级数学上学期期末复习培优练习-第24章圆 选择填空题
    一.选择题(共16小题)
    1.(2022•阜新)如图,A,B,C是⊙O上的三点,若∠C=35°,则∠ABO的度数是(  )

    A.35° B.55° C.60° D.70°
    2.(2022•朝阳)如图,在⊙O中,点A是的中点,∠ADC=24°,则∠AOB的度数是(  )

    A.24° B.26° C.48° D.66°
    3.(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为(  )

    A. B. C. D.
    4.(2022•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则的长为(  )

    A.6π B.2π C.π D.π
    5.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为(  )

    A.4 B.8 C.4 D.4
    6.(2021•沈阳)如图,△ABC是⊙O的内接三角形,AB=2,∠ACB=60°,连接OA,OB,则的长是(  )

    A. B. C.π D.
    7.(2021•鞍山)如图,AB为⊙O的直径,C,D为⊙O上的两点,若∠ABD=54°,则∠C的度数为(  )

    A.34° B.36° C.46° D.54°
    8.(2021•辽宁)如图,在⊙O中,弦CD与直径AB相交于点E,连接OC,BD.若∠ABD=20°,∠AED=80°,则∠COB的度数为(  )

    A.80° B.100° C.120° D.140°
    9.(2021•阜新)如图,A,B,C是⊙O上的三点,若∠O=70°,则∠C的度数是(  )

    A.40° B.35° C.30° D.25°
    10.(2021•营口)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D是上任意一点,则∠ADB度数为(  )

    A.112° B.124° C.122° D.134°
    11.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OAiBi∁iDiEi,则正六边形OAiBi∁iDiEi(i=2020)的顶点∁i的坐标是(  )

    A.(1,﹣) B.(1,) C.(1,﹣2) D.(2,1)
    12.(2020•鞍山)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为(  )

    A.30° B.25° C.15° D.10°
    13.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为(  )

    A.57° B.52° C.38° D.26°
    14.(2020•盘锦)如图,在△ABC中,AB=BC,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为线段OB上的一点,OE:EB=1:,连接DE并延长交CB的延长线于点F,连接OF交⊙O于点G,若BF=2,则的长是(  )

    A. B. C. D.
    15.(2020•沈阳)如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为(  )

    A. B.π C. D.
    16.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是(  )

    A.110° B.130° C.140° D.160°
    二.填空题(共13小题)
    17.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为    .

    18.(2022•沈阳)如图,边长为4的正方形ABCD内接于⊙O,则的长是    (结果保留π).

    19.(2022•大连)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是    (结果保留π).

    20.(2022•盘锦)如图,在△ABC中,AB=AC,∠A=50°,以AB为直径的⊙O交边BC,AC于D,E两点,AC=2,则的长是    .

    21.(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=   度.

    22.(2011•抚顺)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为    .
    23.(2021•朝阳)已知⊙O的半径是7,AB是⊙O的弦,且AB的长为7,则弦AB所对的圆周角的度数为    .
    24.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是    .

    25.(2021•盘锦)如图,⊙A,⊙B,⊙C两两不相交,且半径都等于2,则图中三个扇形(即阴影部分)的面积之和为    .(结果保留π)

    26.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则的长为   .

    27.(2020•朝阳)如图,点A,B,C是⊙O上的点,连接AB,AC,BC,且∠ACB=15°,过点O作OD∥AB交⊙O于点D,连接AD,BD,已知⊙O半径为2,则图中阴影面积为   .

    28.(2020•辽宁)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是   .

    29.(2020•营口)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为   .




    参考答案与试题解析
    一.选择题(共16小题)
    1.(2022•阜新)如图,A,B,C是⊙O上的三点,若∠C=35°,则∠ABO的度数是(  )

    A.35° B.55° C.60° D.70°
    【解答】解:连接OA,

    ∵∠C=35°,
    ∴∠AOB=2∠C=70°,
    ∵OA=OB,
    ∴∠ABO=∠BAO=(180°﹣∠AOB)=55°.
    故选:B.
    2.(2022•朝阳)如图,在⊙O中,点A是的中点,∠ADC=24°,则∠AOB的度数是(  )

    A.24° B.26° C.48° D.66°
    【解答】解:∵点A是的中点,
    ∴,
    ∴∠AOB=2∠ADC=2×24°=48°.
    故选:C.
    3.(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为(  )

    A. B. C. D.
    【解答】解:∵四边形ABCD是矩形,
    ∴∠ABC=∠C=90°,
    ∵BA=BE=2,BC=,
    ∴cos∠CBE==,
    ∴∠CBE=30°,
    ∴∠ABE=90°﹣30°=60°,
    ∴S扇形BAE==,
    故选:C.
    4.(2022•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则的长为(  )

    A.6π B.2π C.π D.π
    【解答】解:∵直径AB=6,
    ∴半径OB=3,
    ∵圆周角∠A=30°,
    ∴圆心角∠BOC=2∠A=60°,
    ∴的长是=π,
    故选:D.
    5.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为(  )

    A.4 B.8 C.4 D.4
    【解答】解:连接AB,如图所示,

    ∵AC⊥BC,
    ∴∠ACB=90°.
    ∵∠ADC=30°,
    ∴∠ABC=∠ADC=30°.
    ∴在Rt△ABC中,
    tan∠ABC=,
    ∴BC=.
    ∵AC=4,
    ∴BC==4.
    故选:A.
    6.(2021•沈阳)如图,△ABC是⊙O的内接三角形,AB=2,∠ACB=60°,连接OA,OB,则的长是(  )

    A. B. C.π D.
    【解答】解:过点O作OD⊥AB于D,
    则AD=DB=AB=,
    由圆周角定理得:∠AOB=2∠ACB=120°,
    ∴∠AOD=60°,
    ∴OA===2,
    ∴的长==,
    故选:D.

    7.(2021•鞍山)如图,AB为⊙O的直径,C,D为⊙O上的两点,若∠ABD=54°,则∠C的度数为(  )

    A.34° B.36° C.46° D.54°
    【解答】解:连接AD,如图,
    ∵AB为⊙O的直径,
    ∴∠ADB=90°,
    ∴∠A=90°﹣∠ABD=90°﹣54°=36°,
    ∴∠C=∠A=36°.
    故选:B.

    8.(2021•辽宁)如图,在⊙O中,弦CD与直径AB相交于点E,连接OC,BD.若∠ABD=20°,∠AED=80°,则∠COB的度数为(  )

    A.80° B.100° C.120° D.140°
    【解答】解:∵∠ABD=20°,∠AED=80°,
    ∴∠D=∠AED﹣∠ABD=80°﹣20°=60°,
    ∴∠COB=2∠D=120°,
    故选:C.
    9.(2021•阜新)如图,A,B,C是⊙O上的三点,若∠O=70°,则∠C的度数是(  )

    A.40° B.35° C.30° D.25°
    【解答】解:∵∠AOB和∠C都对,
    ∴∠C=∠AOB=×70°=35°.
    故选:B.
    10.(2021•营口)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D是上任意一点,则∠ADB度数为(  )

    A.112° B.124° C.122° D.134°
    【解答】解:作所对的圆周角∠APB,如图,
    ∵C为AB的中点,OA=OB,
    ∴OC⊥AB,OC平分∠AOB,
    ∴∠AOC=∠BOC=56°,
    ∴∠APB=∠AOB=56°,
    ∵∠APB+∠ADB=180°,
    ∴∠ADB=180°﹣56°=124°.
    故选:B.

    11.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OAiBi∁iDiEi,则正六边形OAiBi∁iDiEi(i=2020)的顶点∁i的坐标是(  )

    A.(1,﹣) B.(1,) C.(1,﹣2) D.(2,1)
    【解答】解:由题意旋转8次应该循环,
    ∵2020÷8=252…4,
    ∴∁i的坐标与C4的坐标相同,
    ∵C(﹣1,),点C与C4关于原点对称,
    ∵AB=AC=1,∠OAB=120°,
    ∴OB=,
    ∴C4(1,﹣),
    ∴顶点∁i的坐标是(1,﹣),
    故选:A.
    12.(2020•鞍山)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为(  )

    A.30° B.25° C.15° D.10°
    【解答】解:连接OB和OC,
    ∵圆O半径为2cm,BC=2cm,
    ∴OB=OC=BC,
    ∴△OBC为等边三角形,
    ∴∠BOC=60°,
    ∴∠A=∠BOC=30°,


    故选:A.
    13.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为(  )

    A.57° B.52° C.38° D.26°
    【解答】解:连接AC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵∠ABC=38°,
    ∴∠BAC=90°﹣∠ABC=52°,
    ∴∠BDC=∠BAC=52°.
    故选:B.

    14.(2020•盘锦)如图,在△ABC中,AB=BC,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为线段OB上的一点,OE:EB=1:,连接DE并延长交CB的延长线于点F,连接OF交⊙O于点G,若BF=2,则的长是(  )

    A. B. C. D.
    【解答】解:连接OD、BD,
    ∵在△ABC中,AB=BC,∠ABC=90°,
    ∴∠A=∠C=45°,
    ∵AB是直径,
    ∴∠ADB=90°,
    ∵OA=OB,
    ∴OD⊥AB,
    ∴∠AOD=90°,
    ∴∠AOD=∠ABC,
    ∴OD∥FC,
    ∴△DOE∽△FBE,
    ∴=,
    ∵OB=OD,OE:EB=1:,
    ∴tan∠BOF==,
    ∴∠BOF=60°,
    ∴BF=2,
    ∴OB=2,
    ∴的长==π,
    故选:C.

    15.(2020•沈阳)如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为(  )

    A. B.π C. D.
    【解答】解:∵四边形ABCD是矩形,
    ∴AD=BC=2,∠B=90°,
    ∴AE=AD=2,
    ∵AB=,
    ∴cos∠BAE==,
    ∴∠BAE=30°,
    ∴∠EAD=60°,
    ∴的长==,
    故选:C.
    16.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是(  )

    A.110° B.130° C.140° D.160°
    【解答】解:如图,连接BC,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∴∠B=90°﹣∠CAB=90°﹣40°=50°,
    ∵∠B+∠ADC=180°,
    ∴∠ADC=180°﹣50°=130°.
    故选:B.

    二.填空题(共13小题)
    17.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为  40° .

    【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,
    ∴∠B=180°﹣∠ADC=180°﹣130°=50°,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∴∠CAB=90°﹣∠B=90°﹣50°=40°,
    故答案为:40°.
    18.(2022•沈阳)如图,边长为4的正方形ABCD内接于⊙O,则的长是   (结果保留π).

    【解答】解:连接OA、OB.

    ∵正方形ABCD内接于⊙O,
    ∴AB=BC=DC=AD,
    ∴===,
    ∴∠AOB=×360°=90°,
    在Rt△AOB中,由勾股定理得:2AO2=42,
    解得:AO=2,
    ∴的长==π,
    故答案为:π.
    19.(2022•大连)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是  π (结果保留π).

    【解答】解:∵四边形ABCD为正方形,
    ∴∠CAD=45°,AC=AB=×=2,
    ∵对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,
    ∴的长度为=π.
    故答案为:π.
    20.(2022•盘锦)如图,在△ABC中,AB=AC,∠A=50°,以AB为直径的⊙O交边BC,AC于D,E两点,AC=2,则的长是   .

    【解答】解:连接OE,OD,
    ∵AB=AC,∠A=50°,
    ∴∠B=∠C==65°,
    又∵OB=OD,OA=OE,
    ∴∠B=∠ODB=65°,∠A=∠OEA=50°,
    ∴∠BOD=50°,∠AOE=80°,
    ∴∠DOE=50°,
    由于半径为1,
    ∴的长是=.
    故答案为:.

    21.(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF= 30 度.

    【解答】解:设正六边形的边长为1,
    正六边形的每个内角=(6﹣2)×180°÷6=120°,
    ∵AB=BC,∠B=120°,
    ∴∠BAC=∠BCA=×(180°﹣120°)=30°,
    ∵∠BAF=120°,
    ∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,
    如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),
    ∵∠BMA=90°,∠BAM=30°,
    ∴BM=AB=,
    ∴AM===,
    ∴AC=2AM=,
    ∵tan∠ACF===,
    ∴∠ACF=30°,
    故答案为:30.

    22.(2011•抚顺)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为  26+10π .
    【解答】解:∵圆锥的底面半径是5,高是12,
    ∴圆锥的母线长为13,
    ∴这个圆锥的侧面展开图的周长=2×13+2π×5=26+10π.
    故答案为26+10π.
    23.(2021•朝阳)已知⊙O的半径是7,AB是⊙O的弦,且AB的长为7,则弦AB所对的圆周角的度数为  60°或120° .
    【解答】解:∠ACB和∠ADB为弦AB所对的圆周角,连接OA、OB,如图,
    过O点作OH⊥AB于H,则AH=BH=AB=,
    在Rt△OAH中,∵cos∠OAH===,
    ∴∠OAH=30°,
    ∵OA=OB,
    ∴∠OBH=∠OAH=30°,
    ∴∠AOB=120°,
    ∴∠ACB=∠AOB=60°,
    ∵∠ADB+∠ACB=180°,
    ∴∠ADB=180°﹣60°=120°,
    即弦AB所对的圆周角的度数为60°或120°.
    故答案为60°或120°.

    24.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是  (﹣,1) .

    【解答】解:∵四边形ABOC为圆的内接四边形,
    ∴∠ABO+∠ACO=180°,
    ∴∠ABO=180°﹣120°=60°,
    ∵∠AOB=90°,
    ∴AB为⊙D的直径,
    ∴D点为AB的中点,
    在Rt△ABO中,∵∠ABO=60°,
    ∴OB=AB=2,
    ∴OA=OB=2,
    ∴A(﹣2,0),B(0,2),
    ∴D点坐标为(﹣,1).
    故答案为(﹣,1).
    25.(2021•盘锦)如图,⊙A,⊙B,⊙C两两不相交,且半径都等于2,则图中三个扇形(即阴影部分)的面积之和为  2π .(结果保留π)

    【解答】解:∵三个扇形的半径都是2,
    ∴而三个圆心角的和是180°,
    ∴图中的三个扇形(即三个阴影部分)的面积之和为=2π.
    故答案为:2π.
    26.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则的长为 2π .

    【解答】解:连接OC,OA.

    ∵∠AOC=2∠ABC,∠ABC=30°,
    ∴∠AOC=60°,
    ∵OA=OC,
    ∴△AOC是等边三角形,
    ∴OA=OC=AC=6,
    ∴的长==2π,
    故答案为2π.
    27.(2020•朝阳)如图,点A,B,C是⊙O上的点,连接AB,AC,BC,且∠ACB=15°,过点O作OD∥AB交⊙O于点D,连接AD,BD,已知⊙O半径为2,则图中阴影面积为  .

    【解答】解:∵∠ACB=15°,
    ∴∠AOB=30°,
    ∵OD∥AB,
    ∴S△ABD=S△ABO,
    ∴S阴影=S扇形AOB=.
    故答案为:.
    28.(2020•辽宁)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是 66° .

    【解答】解:∵正五边形ABCDE,
    ∴∠EAB==108°,
    ∵△ABF是等边三角形,
    ∴∠FAB=60°,
    ∴∠EAF=108°﹣60°=48°,
    ∵AE=AF,
    ∴∠AEF=∠AFE=(180°﹣48°)=66°,
    故答案为:66°.
    29.(2020•营口)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为 15π .
    【解答】解:∵圆锥的底面半径为3,高为4,
    ∴母线长为5,
    ∴圆锥的侧面积为:πrl=π×3×5=15π,
    故答案为:15π
    【解答】(1)证明:如图1,延长DB至H,

    ∵DG∥BC,
    ∴∠CBH=∠D,
    ∵∠A=∠D,
    ∴∠A=∠CBH,
    ∵AB是⊙O的直径
    ∴∠ACB=90°,
    ∴∠A+∠ABC=90°,
    ∴∠CBH+∠ABC=90°,
    ∴∠ABD=90°,
    ∴BD与⊙O相切;
    (2)解:解法一:如图2,连接OF,

    ∵CF平分∠ACB,
    ∴∠ACF=∠BCF,
    ∴,
    ∴OF⊥AB,
    ∵BD⊥AB,
    ∴OF∥BD,
    ∴△EFO∽△EDB,
    ∴,
    ∵AE=OE,
    ∴,
    ∴=,
    ∴OF=4,
    ∴BE=OE+OB=2+4=6,
    ∴DE===6.
    解法二:如图2,连接OF,
    ∵AE=OE,
    ∴OA=OF=2OE,
    Rt△OEF中,tan∠OEF==2,
    Rt△BED中,tan∠OEF===2,
    ∴BE=6,
    由勾股定理得:DE===6.
    36.(2021•大连)如图1,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC∥MN.
    (1)求证:∠BAC=∠DOC;
    (2)如图2,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.

    【解答】(1)证明:连接OB,如图1,

    ∵直线MN与⊙O相切于点D,
    ∴OD⊥MN,
    ∵BC∥MN,
    ∴OD⊥BC,
    ∴=,
    ∴∠BOD=∠COD,
    ∵∠BAC=∠BOC,
    ∴∠BAC=∠COD;
    (2)∵E是OD的中点,
    ∴OE=DE=2,
    在Rt△OCE中,CE===2,
    ∵OE⊥BC,
    ∴BE=CE=2,
    ∵AC是⊙O的直径,
    ∴∠ABC=90°,
    ∴AB===4,
    在Rt△ABE中,AE===2.
    37.(2021•辽宁)如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.
    (1)求证:EF是⊙O的切线;
    (2)若OC=9,AC=4,AE=8,求BF的长.

    【解答】证明:(1)连接OE,
    ∵OA=OE,
    ∴∠OEA=∠OAE,
    在Rt△ABC中,∠ACB=90°,
    ∴∠BAC+∠B=90°,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠OAE=∠BAC,
    ∴∠OEA=∠BAC,
    ∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,
    ∴OE⊥EF,
    ∵OE是⊙O的半径,
    ∴EF是⊙O的切线;

    (2)解:连接DE,
    ∵OC=9,AC=4,
    ∴OA=OC﹣AC=5,
    ∵AD=2OA,
    ∴AD=10,
    ∵AD是⊙O的直径,
    ∴∠AED=90°,
    在Rt△ADE中,
    ∵DE===6,
    ∴cos∠DAE===,
    在Rt△ABC中,cos∠BAC==,
    ∵∠BAC=∠DAE,
    ∴=,
    ∴AB=5,
    ∴BE=AB+AE=5+8=13,
    ∵OD=OE,
    ∴∠ODE=∠OED,
    ∵EF是⊙O的切线,
    ∴∠FEO=90°,
    ∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,
    ∴∠FEB=∠OED,
    ∴∠B=∠FEB=∠OED=∠ODE,
    ∴△FBE∽△ODE,
    ∴=,
    ∴=,
    ∴BF=.

    方法二:解:连接DE,
    ∵OC=9,AC=4,
    ∴OA=OC﹣AC=5,
    ∵AD=2OA,
    ∴AD=10,
    ∵AD是⊙O的直径,
    ∴∠AED=90°,
    在Rt△ADE中,
    ∵DE===6,
    ∴cos∠DAE===,
    在Rt△ABC中,cos∠BAC==,
    ∵∠BAC=∠DAE,
    ∴=,
    ∴AB=5,
    ∴BE=AB+AE=5+8=13,
    过F作FH⊥BE于F,
    则BH=6.5,
    ∵∠B的余弦等于0.6,
    ∴BF=6.5÷0.6=.

    38.(2020•辽宁)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.
    (1)求证:直线DE是⊙O的切线;
    (2)若AD=6,CD=8,求BD的长.

    【解答】(1)证明:连接OD,
    ∵OC=OD,
    ∴∠OCD=∠ODC,
    ∵AC是直径,
    ∴∠ADC=90°,
    ∵∠EDA=∠ACD,
    ∴∠ADO+∠ODC=∠EDA+∠ADO=90°,
    ∴∠EDO=∠EDA+∠ADO=90°,
    ∴OD⊥DE,
    ∵OD是半径,
    ∴直线DE是⊙O的切线.

    (2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,
    ∵AC是直径,
    ∴∠ABC=∠ADC=90°,
    ∵在Rt△ACD中,AD=6,CD=8,
    ∴AC2=AD2+CD2=62+82=100,
    ∴AC=10,
    ∵在Rt△ABC中,AB=BC,
    ∴∠BAC=∠ACB=45°,
    ∵,
    ∴,
    ∵∠ADB=∠ACB=45°,
    ∵在Rt△ADF中,AD=6,
    ∵,
    ∴,
    ∴,
    在Rt△ABF中,,
    ∴,
    ∴.

    解法二:过点B作BH⊥BD交DC延长线于点H.
    ∴∠DBH=90°,
    ∵AC是直径,
    ∴∠ABC=90°,
    ∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,
    ∴∠ABD=∠CBH,
    ∵四边形ABCD内接于⊙O,
    ∴∠BAD+∠BCD=180°,
    ∵∠BCD+∠BCH=180°,
    ∴∠BAD=∠BCH,
    ∵AB=CB,
    ∴△ABD≌△CBH(ASA),
    ∴AD=CH,BD=BH,
    ∵AD=6,CD=8,
    ∴DH=CD+CH=14,
    在Rt△BDH中,∵BD2=DH2﹣BH2,BD=BH,则BD2=98.
    ∴.
    解法三:如图,设AC交DB于M.

    由△ADM∽△BDC,推出AD•BC=BD•AM,
    由△DCM∽△DBA,推出AB•CD=BD•MC,
    ∴AD•BC+AB•CD=BD•(AM+MC)=BD•AC,
    由此可得BD=7.

    39.(2020•沈阳)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.
    (1)求证:DC=AC;
    (2)若DC=DB,⊙O的半径为1,请直接写出DC的长为  .

    【解答】证明:(1)如图,连接OD,

    ∵CD是⊙O的切线,
    ∴CD⊥OD,
    ∴∠ODC=90°,
    ∴∠BDO+∠ADC=90°,
    ∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∵OB=OD,
    ∴∠OBD=∠ODB,
    ∴∠A=∠ADC,
    ∴CD=AC;
    (2)∵DC=DB,
    ∴∠DCB=∠DBC,
    ∴∠DCB=∠DBC=∠BDO,
    ∵∠DCB+∠DBC+∠BDO+∠ODC=180°,
    ∴∠DCB=∠DBC=∠BDO=30°,
    ∴DC=OD=,
    故答案为:.
    40.(2020•辽宁)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.
    (1)求证:DE与⊙A相切;
    (2)若∠ABC=60°,AB=4,求阴影部分的面积.

    【解答】(1)证明:连接AE,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∴∠DAE=∠AEB,
    ∵AE=AB,
    ∴∠AEB=∠ABC,
    ∴∠DAE=∠ABC,
    ∴△AED≌△BAC(SAS),
    ∴∠DEA=∠CAB,
    ∵∠CAB=90°,
    ∴∠DEA=90°,
    ∴DE⊥AE,
    ∵AE是⊙A的半径,
    ∴DE与⊙A相切;
    (2)解:∵∠ABC=60°,AB=AE=4,
    ∴△ABE是等边三角形,
    ∴AE=BE,∠EAB=60°,
    ∵∠CAB=90°,
    ∴∠CAE=90°﹣∠EAB=90°﹣60°=30°,∠ACB=90°﹣∠B=90°﹣60°=30°,
    ∴∠CAE=∠ACB,
    ∴AE=CE,
    ∴CE=BE,
    ∴S△ABC=AB•AC==8,
    ∴S△ACE=S△ABC==4,
    ∵∠CAE=30°,AE=4,
    ∴S扇形AEF===,
    ∴S阴影=S△ACE﹣S扇形AEF=4﹣.

    相关试卷

    2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式+选择、填空题+(辽宁中考): 这是一份2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式+选择、填空题+(辽宁中考),共9页。

    2022-2023九年级数学下册期末复习培优练习-第26章反比例函数 选择、填空题(辽宁中考): 这是一份2022-2023九年级数学下册期末复习培优练习-第26章反比例函数 选择、填空题(辽宁中考),共28页。

    2022-2023九年级数学上学期期末复习培优练习-第25章概率初步 选择、填空题(辽宁中考): 这是一份2022-2023九年级数学上学期期末复习培优练习-第25章概率初步 选择、填空题(辽宁中考),共16页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map