第8章统计和概率的简单应用+解答题基础题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
展开
这是一份第8章统计和概率的简单应用+解答题基础题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共46页。
第8章统计和概率的简单应用 解答题基础题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
一.总体、个体、样本、样本容量(共1小题)
1.(2022•扬州)某校初一年级有600名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.
(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中 (填“A”或“B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;
(2)根据合理的调查方式收集到的测试成绩数据记录如下:
成绩/个
2
3
4
5
7
13
14
15
人数/人
1
1
1
8
5
1
2
1
这组测试成绩的平均数为 个,中位数为 个;
(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.
二.用样本估计总体(共1小题)
2.(2022•苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:
训前
成绩(分)
6
7
8
9
10
划记
正正
正
正
人数(人)
12
4
7
5
4
培训后
成绩(分)
6
7
8
9
10
划记
一
正
正正正
人数(人)
4
1
3
9
15
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
三.频数(率)分布表(共1小题)
3.(2022•镇江)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:
车速(km/h)
40
41
42
43
44
45
频数
6
8
15
a
3
2
其中车速为40、43(单位:km/h)的车辆数分别占监测得车辆总数的12%、32%.
(1)求出表格中a的值;
(2)如果一辆汽车行驶的车速不超过40km/h的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.
四.扇形统计图(共5小题)
4.(2022•无锡)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:
育人中学初二学生30秒跳绳测试成绩的频数分布表
跳绳个数(x)
x≤50
50<x≤60
60<x≤70
70<x≤80
x>80
频数(摸底测试)
19
27
72
a
17
频数(最终测试)
3
6
59
b
c
(1)表格中a= ;
(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)
(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?
5.(2021•无锡)某企业为推进全民健身活动,提升员工身体素质,号召员工开展健身锻炼活动,经过两个月的宣传发动,员工健身锻炼的意识有了显著提高.为了调查本企业员工上月参加健身锻炼的情况,现从1500名员工中随机抽取200人调查每人上月健身锻炼的次数,并将调查所得的数据整理如下:
某企业员工参加健身锻炼次数的频数分布表
锻炼次数x(代号)
0<x≤5
(A)
5<x≤10
(B)
10<x≤15
(C)
15<x≤20
(D)
20<x≤25
(E)
25<x≤30
(F)
频数
10
a
68
c
24
6
频率
0.05
b
0.34
d
0.12
0.03
(1)表格中a= ;
(2)请把扇形统计图补充完整;(只需标注相应的数据)
(3)请估计该企业上月参加健身锻炼超过10次的员工有多少人?
6.(2021•宿迁)某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了尚不完整的统计图表:
人口年龄结构统计表
类别
A
B
C
D
年龄(t岁)
0≤t<15
15≤t<60
60≤t<65
t≥65
人数(万人)
4.7
11.6
m
2.7
根据以上信息解答下列问题:
(1)本次抽样调查,共调查了 万人;
(2)请计算统计表中m的值以及扇形统计图中“C”对应的圆心角度数;
(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.
7.(2021•扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数统计表
喜欢程度
人数
A.非常喜欢
50人
B.比较喜欢
m人
C.无所谓
n人
D.不喜欢
16人
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 ;
(2)扇形统计图中表示A程度的扇形圆心角为 °,统计表中m= ;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).
8.(2020•徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如图尚不完整的统计图表:
市民每天的阅读时间统计表
类别
A
B
C
D
阅读时间x(min)
0≤x<30
30≤x<60
60≤x<90
x≥90
频数
450
400
m
50
根据以上信息解答下列问题:
(1)该调查的样本容量为 ,m= ;
(2)在扇形统计图中,“B”对应扇形的圆心角等于 °;
(3)将每天阅读时间不低于60min的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.
五.条形统计图(共9小题)
9.(2022•常州)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.
(1)本次调查的样本容量是 ,请补全条形统计图;
(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.
10.(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:
(1)m= ,n= ;
(2)补全条形统计图;
(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.
11.(2021•常州)为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成统计图.
(1)本次调查的样本容量是 ;
(2)补全条形统计图;
(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识“完全了解”的居民人数.
12.(2021•苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为 名,补全条形统计图(画图并标注相应数据);
(2)在扇形统计图中,选择“陶艺”课程的学生占 %;
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
13.(2021•连云港)端午节吃粽子是中华民族的传统习俗.某食品厂为了解市民对去年销量较好的A、B、C、D四种粽子的喜爱情况,在端午节前对某小区居民进行抽样调查(每人只选一种粽子),并将调查情况绘制成两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)补全条形统计图;
(2)扇形统计图中,D种粽子所在扇形的圆心角是 °;
(3)这个小区有2500人,请你估计爱吃B种粽子的人数为 .
14.(2020•常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.
(1)本次抽样调查的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.
15.(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.
请解答下列问题:
(1)本次问卷共随机调查了 名学生,扇形统计图中C选项对应的圆心角为 度;
(2)请补全条形统计图;
(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?
16.(2020•连云港)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.
测试成绩统计表
等级
频数(人数)
频率
优秀
30
a
良好
b
0.45
合格
24
0.20
不合格
12
0.10
合计
c
1
根据统计图表提供的信息,解答下列问题:
(1)表中a= ,b= ,c= ;
(2)补全条形统计图;
(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?
17.(2020•无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)
年份
2014年
2015年
2016年
2017年
2018年
2019年
收入
3
8
9
a
14
18
支出
1
4
5
6
c
6
存款余额
2
6
10
15
b
34
(1)表格中a= ;
(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)
(3)请问小李在哪一年的支出最多?支出了多少万元?
六.折线统计图(共3小题)
18.(2021•泰州)近5年,我省家电业的发展发生了新变化.以甲、乙、丙3种家电为例,将这3种家电2016~2020年的产量(单位:万台)绘制成如图所示的折线统计图,图中只标注了甲种家电产量的数据.
观察统计图回答下列问题:
(1)这5年甲种家电产量的中位数为 万台;
(2)若将这5年家电产量按年份绘制成5个扇形统计图,每个统计图只反映该年这3种家电产量占比,其中有一个扇形统计图的某种家电产量占比对应的圆心角大于180°,这个扇形统计图对应的年份是 年;
(3)小明认为:某种家电产量的方差越小,说明该家电发展趋势越好.你同意他的观点吗?请结合图中乙、丙两种家电产量变化情况说明理由.
19.(2020•盐城)在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.
(1)根据图①中的数据,A地区星期三累计确诊人数为 ,新增确诊人数为 ;
(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.
(3)你对这两个地区的疫情做怎样的分析、推断.
20.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表.
2020年6月2日骑乘人员头盔佩戴情况统计表
骑乘摩托车
骑乘电动自行车
戴头盔人数
18
72
不戴头盔人数
2
m
(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;
(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?
(3)求统计表中m的值.
七.列表法与树状图法(共15小题)
21.(2022•泰州)即将在泰州举办的江苏省第20届运动会带动了我市的全民体育热.小明去某体育馆锻炼,该体育馆有A、B两个进馆通道和C、D、E三个出馆通道,从进馆通道进馆的可能性相同,从出馆通道出馆的可能性也相同.用列表或画树状图的方法列出小明一次经过进馆通道与出馆通道的所有等可能的结果,并求他恰好经过通道A与通道D的概率.
22.(2022•宿迁)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
23.(2022•苏州)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,这个球是白球的概率为 ;
(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)
24.(2021•镇江)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.
25.(2021•扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
(1)甲坐在①号座位的概率是 ;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
26.(2021•连云港)为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.
(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是 ;
(2)求所选代表恰好为1名女生和1名男生的概率.
27.(2020•无锡)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.
(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是 ;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
28.(2020•无锡)某校举行辩论赛,现初三(1)班要从3名男生、2名女生中选送学生参加比赛.
(1)若选送1名学生参赛,则男生被选中的概率为 ;
(2)若选送2名学生参赛,求选出的恰好是1位男生、1位女生的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程).
29.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.
请用所学概率知识解决下列问题:
(1)写出这三辆车按先后顺序出发的所有可能结果;
(2)两人中,谁乘坐到甲车的可能性大?请说明理由.
30.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.
(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 .
(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).
31.(2020•常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.
(1)搅匀后从中随机抽出1支签,抽到1号签的概率是 ;
(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.
32.(2020•徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).
(1)小红的爸爸被分到B组的概率是 ;
(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)
33.(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是 ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
34.(2020•南京)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.
(1)求甲选择的2个景点是A、B的概率;
(2)甲、乙两人选择的2个景点恰好相同的概率是 .
35.(2020•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.
八.游戏公平性(共1小题)
36.(2021•苏州)4张相同的卡片上分别写有数字0、1、﹣2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为 ;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
第8章统计和概率的简单应用 解答题基础题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
参考答案与试题解析
一.总体、个体、样本、样本容量(共1小题)
1.(2022•扬州)某校初一年级有600名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.
(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中 B (填“A”或“B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;
(2)根据合理的调查方式收集到的测试成绩数据记录如下:
成绩/个
2
3
4
5
7
13
14
15
人数/人
1
1
1
8
5
1
2
1
这组测试成绩的平均数为 7 个,中位数为 5 个;
(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.
【解答】解:(1)从初一所有男生中随机抽取20名男生进行引体向上测试,收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况,
故答案为:B;
(2)这组测试成绩的平均数为:(2×1+3×1+4×1+5×8+7×5+13×1+14×2+15×1)=7(个),
中位数为:5(个),
故答案为:7,5;
(3)600×=90(人),
答:校初一有90名男生不能达到合格标准.
二.用样本估计总体(共1小题)
2.(2022•苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:
训前
成绩(分)
6
7
8
9
10
划记
正正
正
正
人数(人)
12
4
7
5
4
培训后
成绩(分)
6
7
8
9
10
划记
一
正
正正正
人数(人)
4
1
3
9
15
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m < n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
【解答】解:∵培训前测试成绩的中位数m==7.5,培训后测试成绩的中位数n==9,
∴m<n;
故答案为:<;
(2)培训前:×100%,培训后:×100%,
×100%﹣×100%=25%,
答:测试成绩为“6分”的百分比比培训前减少了25%;
(3)培训前:640×=80,培训后:640×=300,
300﹣80=220,
答:测试成绩为“10分”的学生增加了220人.
三.频数(率)分布表(共1小题)
3.(2022•镇江)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:
车速(km/h)
40
41
42
43
44
45
频数
6
8
15
a
3
2
其中车速为40、43(单位:km/h)的车辆数分别占监测得车辆总数的12%、32%.
(1)求出表格中a的值;
(2)如果一辆汽车行驶的车速不超过40km/h的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.
【解答】解:(1)由题意得:,
a=50×32%=16;
(2)由题意得出,安全行驶速度小于或等于44km/h,
因为该时段检测车辆样本中安全行驶的车辆占总监测车辆的占比为,
所以估计其中安全行驶的车辆数为:20000×=19200(辆).
四.扇形统计图(共5小题)
4.(2022•无锡)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:
育人中学初二学生30秒跳绳测试成绩的频数分布表
跳绳个数(x)
x≤50
50<x≤60
60<x≤70
70<x≤80
x>80
频数(摸底测试)
19
27
72
a
17
频数(最终测试)
3
6
59
b
c
(1)表格中a= 65 ;
(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)
(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?
【解答】解:(1)a=200﹣19﹣27﹣72﹣17=65,
故答案为:65;
(2)100%﹣41%﹣29.5%﹣3%﹣1.5%=25%,
扇形统计图补充:如图所示:
(3)200×25%=50(人),
答:经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有50人.
5.(2021•无锡)某企业为推进全民健身活动,提升员工身体素质,号召员工开展健身锻炼活动,经过两个月的宣传发动,员工健身锻炼的意识有了显著提高.为了调查本企业员工上月参加健身锻炼的情况,现从1500名员工中随机抽取200人调查每人上月健身锻炼的次数,并将调查所得的数据整理如下:
某企业员工参加健身锻炼次数的频数分布表
锻炼次数x(代号)
0<x≤5
(A)
5<x≤10
(B)
10<x≤15
(C)
15<x≤20
(D)
20<x≤25
(E)
25<x≤30
(F)
频数
10
a
68
c
24
6
频率
0.05
b
0.34
d
0.12
0.03
(1)表格中a= 42 ;
(2)请把扇形统计图补充完整;(只需标注相应的数据)
(3)请估计该企业上月参加健身锻炼超过10次的员工有多少人?
【解答】解:(1)a=200×21%=42(人),
故答案为:42;
(2)b=21%=0.21,
C组所占的百分比:0.34=34%,
D组所占的百分比是:d=1﹣0.05﹣0.21﹣0.34﹣0.12﹣0.03=0.25=25%,
扇形统计图补充完整如图:
;
(3)估计该企业上月参加健身锻炼超过10次的员工有1500×(0.34+0.25+0.12+0.03)=1110(人).
答:估计该企业上月参加健身锻炼超过10次的员工有1110人.
6.(2021•宿迁)某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了尚不完整的统计图表:
人口年龄结构统计表
类别
A
B
C
D
年龄(t岁)
0≤t<15
15≤t<60
60≤t<65
t≥65
人数(万人)
4.7
11.6
m
2.7
根据以上信息解答下列问题:
(1)本次抽样调查,共调查了 20 万人;
(2)请计算统计表中m的值以及扇形统计图中“C”对应的圆心角度数;
(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.
【解答】解:(1)本次抽样调查,共调查的人数是:11.6÷58%=20(万人),
故答案为:20;
(2)“C”的人数有:20﹣4.7﹣11.6﹣2.7=1(万人),
∴m=1,
扇形统计图中“C”对应的圆心角度数为×360°=18°.
答:统计表中m的值是1,扇形统计图中“C”对应的圆心角度数为18°;
(3)500×=92.5(万人).
答:估计宿迁市现有60岁及以上的人口数量约92.5万人.
7.(2021•扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数统计表
喜欢程度
人数
A.非常喜欢
50人
B.比较喜欢
m人
C.无所谓
n人
D.不喜欢
16人
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 200 ;
(2)扇形统计图中表示A程度的扇形圆心角为 90 °,统计表中m= 94 ;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).
【解答】解:(1)16÷8%=200,
则样本容量是200;
故答案为:200.
(2)×360°=90°,
则表示A程度的扇形圆心角为90°;
200×(1﹣8%﹣20%﹣×100%)=94,
则m=94;
故答案为:90;94.
(3)=1440(名),
∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.
8.(2020•徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如图尚不完整的统计图表:
市民每天的阅读时间统计表
类别
A
B
C
D
阅读时间x(min)
0≤x<30
30≤x<60
60≤x<90
x≥90
频数
450
400
m
50
根据以上信息解答下列问题:
(1)该调查的样本容量为 1000 ,m= 100 ;
(2)在扇形统计图中,“B”对应扇形的圆心角等于 144 °;
(3)将每天阅读时间不低于60min的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.
【解答】解:(1)450÷45%=1000,
m=1000﹣(450+400+50)=100.
故答案为:1000,100;
(2)360°×=144°.
即在扇形统计图中,“B”对应扇形的圆心角等于144°.
故答案为:144;
(3)600×=90(万人).
答:估计该市能称为“阅读爱好者”的市民有90万人.
五.条形统计图(共9小题)
9.(2022•常州)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.
(1)本次调查的样本容量是 100 ,请补全条形统计图;
(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.
【解答】解:(1)20÷20%=100,
所以本次调查的样本容量为100;
C类户数为100×25%=25(户),
B类户数为100﹣20﹣25﹣15=40(户),
补全条形统计图为:
故答案为:100;
(2)调查小组的估计合理.
理由如下:
因为1500×=225(户),
所以根据该小区1周内使用7个及以上环保塑料袋的家庭约有225户.
10.(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:
(1)m= 200 ,n= 30 ;
(2)补全条形统计图;
(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.
【解答】解:(1)n%=1﹣(15%+5%+25%+25%)=30%,
∴n=30,
m=10÷5%=200;
故答案为:200,30;
(2)参加“综合与实践”活动天数为3天的学生人数为200×15%=30(名),
补全条形图如下:
(3)估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为2000×(1﹣5%﹣15%)=1600(名).
答:估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为1600名.
11.(2021•常州)为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成统计图.
(1)本次调查的样本容量是 100 ;
(2)补全条形统计图;
(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识“完全了解”的居民人数.
【解答】解:(1)55÷55%=100,
故答案为:100;
(2)完全了解的人数为:100×30%=30(人),
较少了解的人数为:100﹣30﹣55﹣5=10(人),
补全条形统计图如下:
(3)估计该小区对垃圾分类知识“完全了解”的居民人数为:2000×30%=600(人),
答:估计该小区对垃圾分类知识“完全了解”的居民人数为600人.
12.(2021•苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为 50 名,补全条形统计图(画图并标注相应数据);
(2)在扇形统计图中,选择“陶艺”课程的学生占 10 %;
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
【解答】解:(1)参加问卷调查的学生人数为=50(名),
剪纸的人数有:50﹣15﹣10﹣5=20(名),补全统计图如下:
故答案为:50;
(2)在扇形统计图中,选择“陶艺”课程的学生所占的百分比是:×100%=10%.
故答案为:10;
(3)1000×=200(名),
答:估计选择“刺绣”课程的学生有200名.
13.(2021•连云港)端午节吃粽子是中华民族的传统习俗.某食品厂为了解市民对去年销量较好的A、B、C、D四种粽子的喜爱情况,在端午节前对某小区居民进行抽样调查(每人只选一种粽子),并将调查情况绘制成两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)补全条形统计图;
(2)扇形统计图中,D种粽子所在扇形的圆心角是 108 °;
(3)这个小区有2500人,请你估计爱吃B种粽子的人数为 500 .
【解答】解:(1)抽样调查的总人数:240÷40%=600(人),
喜欢B种粽子的人数为:600﹣240﹣60﹣180=120(人),
补全条形统计图,如图所示;
(2)×100%=30%,
360°×30%=108°,
故答案为:108;
(3)1﹣40%﹣10%﹣30%=20%,
2500×20%=500(人),
故答案为:500.
14.(2020•常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.
(1)本次抽样调查的样本容量是 100 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.
【解答】解:(1)本次抽样调查的总人数是:25÷25%=100(人),
则样本容量是100;
故答案为:100;
(2)打乒乓球的人数有:100×35%=35(人),
踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:
(3)根据题意得:
2000×=300(人),
答:估计该校最喜爱“打篮球”的学生人数有300人.
15.(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.
请解答下列问题:
(1)本次问卷共随机调查了 60 名学生,扇形统计图中C选项对应的圆心角为 108 度;
(2)请补全条形统计图;
(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?
【解答】解:(1)24÷40%=60(名),360°×=108°,
故答案为:60,108;
(2)60×25%=15(人),
补全条形统计图如图所示:
(3)1200×=60(人),
答:估计该校1200名学生中选择“不了解”的大约有60人.
16.(2020•连云港)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.
测试成绩统计表
等级
频数(人数)
频率
优秀
30
a
良好
b
0.45
合格
24
0.20
不合格
12
0.10
合计
c
1
根据统计图表提供的信息,解答下列问题:
(1)表中a= 0.25 ,b= 54 ,c= 120 ;
(2)补全条形统计图;
(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?
【解答】解:(1)本次抽取的学生有:24÷0.20=120(人),
a=30÷120=0.25,b=120×0.45=54,c=120,
故答案为:0.25,54,120;
(2)由(1)知,b=54,
补全的条形统计图如右图所示;
(3)2400×(0.45+0.25)=1680(人),
答:测试成绩等级在良好以上(包括良好)的学生约有1680人.
17.(2020•无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)
年份
2014年
2015年
2016年
2017年
2018年
2019年
收入
3
8
9
a
14
18
支出
1
4
5
6
c
6
存款余额
2
6
10
15
b
34
(1)表格中a= 11 ;
(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)
(3)请问小李在哪一年的支出最多?支出了多少万元?
【解答】解:(1)10+a﹣6=15,解得,a=11,
故答案为:11;
(2)根据题意得,解得,,
即存款余额为22万元,
条形统计图补充为:
(3)小李在2018年的支出最多,支出了7万元.
六.折线统计图(共3小题)
18.(2021•泰州)近5年,我省家电业的发展发生了新变化.以甲、乙、丙3种家电为例,将这3种家电2016~2020年的产量(单位:万台)绘制成如图所示的折线统计图,图中只标注了甲种家电产量的数据.
观察统计图回答下列问题:
(1)这5年甲种家电产量的中位数为 935 万台;
(2)若将这5年家电产量按年份绘制成5个扇形统计图,每个统计图只反映该年这3种家电产量占比,其中有一个扇形统计图的某种家电产量占比对应的圆心角大于180°,这个扇形统计图对应的年份是 2020 年;
(3)小明认为:某种家电产量的方差越小,说明该家电发展趋势越好.你同意他的观点吗?请结合图中乙、丙两种家电产量变化情况说明理由.
【解答】解:(1)这5年甲种家电产量从小到大排列为:466,921,935,1035,1046,
∴这5年甲种家电产量的中位数为935万台,
故答案为:935;
(2)由折线统计图得,2020年甲、丙2种家电产量和小于乙种家电产量,
∴2020年的扇形统计图的乙种家电产量占比对应的圆心角大于180°,
故答案为:2020;
(3)不同意小明的观点,
理由:由折线统计图得,丙种家电的方差较小,但丙种家电的产量低,而且是下降趋势,乙种家电的方差较大,但乙种家电的产量高,而且是上升趋势,
∴不同意小明的观点.
19.(2020•盐城)在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.
(1)根据图①中的数据,A地区星期三累计确诊人数为 41 ,新增确诊人数为 13 ;
(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.
(3)你对这两个地区的疫情做怎样的分析、推断.
【解答】解:(1)41﹣28=13(人),
故答案为:41,13;
(2)分别计算A地区一周每一天的“新增确诊人数”为14,14,13,16,17,14,10;
绘制的折线统计图如图所示:
(3)A地区的累计确诊人数可能还会增加,防控形势十分严峻,并且每一天的新增确诊人数均在10人以上,每天新增确诊的人数不断减少的变化趋势不明显,而B地区的“新增确诊人数”不断减少,疫情防控向好的方向发展,说明防控措施落实的比较到位.
20.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表.
2020年6月2日骑乘人员头盔佩戴情况统计表
骑乘摩托车
骑乘电动自行车
戴头盔人数
18
72
不戴头盔人数
2
m
(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;
(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?
(3)求统计表中m的值.
【解答】解:(1)不同意,虽然可用某地区一路口的摩托车骑乘人员佩戴头盔情况来估计该地区的摩托车骑乘人员佩戴头盔情况,但是,只用6月3日的来估计,具有片面性,不能代表该地区的真实情况,可用某地区一路口一段时间内的平均值进行估计,就比较客观、具有代表性.
(2)通过折线统计图中,摩托车和电动自行车骑乘人员佩戴头盔的百分比的变化情况,可以得出:需要对电动自行车骑乘人员佩戴头盔情况进行宣传,毕竟这5天,其佩戴的百分比增长速度较慢.
(3)由题意得,=45%,解得,m=88,
经检验,m=88是分式方程的解,且符合题意.
答:统计表中的m的值为88人.
七.列表法与树状图法(共15小题)
21.(2022•泰州)即将在泰州举办的江苏省第20届运动会带动了我市的全民体育热.小明去某体育馆锻炼,该体育馆有A、B两个进馆通道和C、D、E三个出馆通道,从进馆通道进馆的可能性相同,从出馆通道出馆的可能性也相同.用列表或画树状图的方法列出小明一次经过进馆通道与出馆通道的所有等可能的结果,并求他恰好经过通道A与通道D的概率.
【解答】解:树状图如下所示,
由上可得,一共有6种可能性,其中恰好经过通道A与通道D的可能性有1种,
∴恰好经过通道A与通道D的概率为.
22.(2022•宿迁)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
【解答】解:(1)由题意可得,
甲一定参加比赛,再从其余3名学生中任意选取1名,有3种可能性,其中选中丙的有1种可能性,
故恰好选中丙的概率是,
故答案为:;
(2)树状图如下:
由上可得,一共有12种可能性,其中一定有乙的可能性有6种,
故一定有乙的概率是=.
23.(2022•苏州)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,这个球是白球的概率为 ;
(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)
【解答】解:(1)∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,
∴搅匀后从中任意摸出1个球,则摸出白球的概率为:=.
故答案为:;
(2)画树状图如图所示:
共有16种不同的结果数,其中两个球颜色不同的有6种,
∴2次摸到的球恰好是1个白球和1个红球的概率为=.
24.(2021•镇江)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.
【解答】解:画树状图得:
共8种等可能情况,其中这三人在同一个献血站献血的有2种结果,
所以这三人在同一个献血站献血的概率为=.
25.(2021•扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
(1)甲坐在①号座位的概率是 ;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
【解答】解:(1)∵丙坐了一张座位,
∴甲坐在①号座位的概率是;
(2)画树状图如图:
共有6种等可能的结果,甲与乙两人恰好相邻而坐的结果有4种,
∴甲与乙相邻而坐的概率为.
26.(2021•连云港)为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.
(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是 ;
(2)求所选代表恰好为1名女生和1名男生的概率.
【解答】解:(1)∵已确定甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中乙的只有1种,
∴恰好选中乙的概率为:.
故答案为:.
(2)画树状图如下图:
共有12种等可能的结果数,其中恰好有1名女生和1名男生的结果数为8,
∴P(1女1男)==.
∴所选代表恰好为1名女生和1名男生的概率是.
27.(2020•无锡)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.
(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是 ;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
【解答】解:(1)从中任意抽取1张,抽的卡片上的数字恰好为3的概率=;
故答案为:;
(2)画树状图为:
共有12种等可能的结果数,其中抽得的2张卡片上的数字之和为3的倍数的结果数为4,
所以抽得的2张卡片上的数字之和为3的倍数的概率==.
28.(2020•无锡)某校举行辩论赛,现初三(1)班要从3名男生、2名女生中选送学生参加比赛.
(1)若选送1名学生参赛,则男生被选中的概率为 ;
(2)若选送2名学生参赛,求选出的恰好是1位男生、1位女生的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程).
【解答】解:(1)∵初三(1)班要从3名男生、2名女生中选送学生参加比赛,
∴男生被选中的概率为=.
故答案为:.
(2)作出树状图如下图所示:
共有20种等可能的情况数,其中选出的恰好是1位男生、1位女生的有12种,
则选出的恰好是1位男生、1位女生的概率是=.
29.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.
请用所学概率知识解决下列问题:
(1)写出这三辆车按先后顺序出发的所有可能结果;
(2)两人中,谁乘坐到甲车的可能性大?请说明理由.
【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;
(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,
则张先生坐到甲车的概率是=;
由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,
则李先生坐到甲车的概率是=;
所以两人坐到甲车的可能性一样.
30.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.
(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 .
(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).
【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,
故答案为:;
(2)画树状图如下:
由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,
∴至少有1张印有“兰”字的概率为.
31.(2020•常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.
(1)搅匀后从中随机抽出1支签,抽到1号签的概率是 ;
(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.
【解答】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,
故答案为:;
(2)用列表法表示所有可能出现的结果情况如下:
共有6种可能出现的结果,其中“和为奇数”的有4种,
∴P(和为奇数)==.
32.(2020•徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).
(1)小红的爸爸被分到B组的概率是 ;
(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)
【解答】解:(1)共有3种等可能出现的结果,被分到“B组”的有1种,因此被分到“B组”的概率为;
(2)用列表法表示所有等可能出现的结果如下:
共有9种等可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,
∴P(他与小红爸爸在同一组)==.
33.(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是 ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
【解答】解:(1)小明从A测温通道通过的概率是,
故答案为:;
(2)列表格如下:
A
B
C
A
A,A
B,A
C,A
B
A,B
B,B
C,B
C
A,C
B,C
C,C
由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,
所以小明和小丽从同一个测温通道通过的概率为=.
34.(2020•南京)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.
(1)求甲选择的2个景点是A、B的概率;
(2)甲、乙两人选择的2个景点恰好相同的概率是 .
【解答】解:甲选择的2个景点所有可能出现的结果如下:
(1)共有6种可能出现的结果,其中选择A、B的有2种,
∴P(A、B)==;
(2)用树状图表示如下:
共有9种可能出现的结果,其中选择景点相同的有3种,
∴P(景点相同)==.
故答案为:.
35.(2020•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.
【解答】解:用列表格法表示点A所有可能的情况如下:
共有9种等可能出现的结果,其中点A在坐标轴上有5种,
∴P(点A在坐标轴上)=.
八.游戏公平性(共1小题)
36.(2021•苏州)4张相同的卡片上分别写有数字0、1、﹣2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为 ;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
【解答】解:(1)第一次抽取的卡片上数字是负数的概率为,
故答案为:.
(2)列表如下:
0
1
﹣2
3
0
1
﹣2
3
1
﹣1
﹣3
2
﹣2
2
3
5
3
﹣3
﹣2
﹣5
由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,
所以甲获胜的概率=乙获胜的概率==,
∴此游戏公平.
相关试卷
这是一份第5章二次函数解答题-中档题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共27页。试卷主要包含了图象的顶点在y轴右侧,三点,对称轴是直线x=1等内容,欢迎下载使用。
这是一份第22章+二次函数(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共13页。试卷主要包含了2进行了探究,把抛物线C1等内容,欢迎下载使用。
这是一份第25章+概率初步(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川),共34页。