第2章对称图形-圆解答题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
展开第2章对称图形-圆解答题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
一.垂径定理(共1小题)
1.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.
二.圆周角定理(共4小题)
2.(2021•徐州)如图,AB为⊙O的直径,点 C、D在⊙O上,AC与OD交于点E,AE=EC,OE=ED.连接BC、CD.求证:
(1)△AOE≌△CDE;
(2)四边形OBCD是菱形.
3.(2020•宿迁)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.
(1)请判断直线AC是否是⊙O的切线,并说明理由;
(2)若CD=2,CA=4,求弦AB的长.
4.(2020•泰州)如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.
(1)求证:N为BE的中点.
(2)若⊙O的半径为8,的度数为90°,求线段MN的长.
5.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.
求证:(1)四边形DBCF是平行四边形;
(2)AF=EF.
三.直线与圆的位置关系(共3小题)
6.(2022•徐州)如图,点A、B、C点圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.
(1)判断直线AD与圆O的位置关系,并说明理由;
(2)若圆的半径为6,求图中阴影部分的面积.
7.(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
(1)试判断AE与⊙O的位置关系,并说明理由;
(2)若AC=6,求阴影部分的面积.
8.(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若∠A=30°,OP=1,求图中阴影部分的面积.
四.切线的性质(共1小题)
9.(2021•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,∠CAD=35°,连接BC.
(1)求∠B的度数;
(2)若AB=2,求的长.
五.切线的判定与性质(共1小题)
10.(2020•盐城)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.
(1)求证:CD是⊙O的切线;
(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.
六.弧长的计算(共1小题)
11.(2022•泰州)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.
(1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;
(2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.
七.扇形面积的计算(共1小题)
12.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.
(1)试判断CD与⊙B的位置关系,并说明理由;
(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.
第2章对称图形-圆解答题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
参考答案与试题解析
一.垂径定理(共1小题)
1.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.
【解答】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.
求证:AM=BM,,.
证明:连接OA、OB,
∵OA=OB,
∴△OAB是等腰三角形,
∵AB⊥CD,
∴AM=BM,∠AOC=∠BOC,
∴,.
二.圆周角定理(共4小题)
2.(2021•徐州)如图,AB为⊙O的直径,点 C、D在⊙O上,AC与OD交于点E,AE=EC,OE=ED.连接BC、CD.求证:
(1)△AOE≌△CDE;
(2)四边形OBCD是菱形.
【解答】证明:(1)在△AOE和△CDE中,
,
∴△AOE≌△CDE(SAS);
(2)∵△AOE≌△CDE,
∴OA=CD,∠AOE=∠D,
∴OB∥CD,
∵OA=OB,
∴OB=CD,
∴四边形OBCD为平行四边形,
∵OB=OD,
∴四边形OBCD是菱形.
3.(2020•宿迁)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.
(1)请判断直线AC是否是⊙O的切线,并说明理由;
(2)若CD=2,CA=4,求弦AB的长.
【解答】解:(1)直线AC是⊙O的切线,
理由如下:如图,连接OA,
∵BD为⊙O的直径,
∴∠BAD=90°=∠OAB+∠OAD,
∵OA=OB,
∴∠OAB=∠ABC,
又∵∠CAD=∠ABC,
∴∠OAB=∠CAD=∠ABC,
∴∠OAD+∠CAD=90°=∠OAC,
∴AC⊥OA,
又∵OA是半径,
∴直线AC是⊙O的切线;
(2)方法一、过点A作AE⊥BD于E,
∵OC2=AC2+AO2,
∴(OA+2)2=16+OA2,
∴OA=3,
∴OC=5,BC=8,
∵S△OAC=×OA×AC=×OC×AE,
∴AE==,
∴OE===,
∴BE=BO+OE=,
∴AB===.
方法二、∵∠CAD=∠ABC,∠C=∠C,
∴△ACD∽△BCA,
∴=,
∴,
∴BC=8,AB=2AD,
∴BD=6,
∵AB2+AD2=BD2,
∴5AD2=36,
∴AD=,
∴AB=2AD=.
4.(2020•泰州)如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.
(1)求证:N为BE的中点.
(2)若⊙O的半径为8,的度数为90°,求线段MN的长.
【解答】(1)证明:∵AD⊥PC,
∴∠EMC=90°,
∵点P为的中点,
∴,
∴∠ADP=∠BCP,
∵∠CEM=∠DEN,
∴∠DNE=∠EMC=90°=∠DNB,
∵,
∴∠BDP=∠ADP,
∴∠DEN=∠DBN,
∴DE=DB,
∴EN=BN,
∴N为BE的中点;
(2)解:连接OA,OB,AB,AC,
∵的度数为90°,
∴∠AOB=90°,
∵OA=OB=8,
∴AB=8,
由(1)同理得:AM=EM,
∵EN=BN,
∴MN是△AEB的中位线,
∴MN=AB=4.
5.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.
求证:(1)四边形DBCF是平行四边形;
(2)AF=EF.
【解答】证明:(1)∵AC=BC,
∴∠BAC=∠B,
∵DF∥BC,
∴∠ADF=∠B,
∵∠BAC=∠CFD,
∴∠ADF=∠CFD,
∴BD∥CF,
∵DF∥BC,
∴四边形DBCF是平行四边形;
(2)连接AE,
∵∠ADF=∠B,∠ADF=∠AEF,
∴∠AEF=∠B,
∵四边形AECF是⊙O的内接四边形,
∴∠ECF+∠EAF=180°,
∵BD∥CF,
∴∠ECF+∠B=180°,
∴∠EAF=∠B,
∴∠AEF=∠EAF,
∴AF=EF.
三.直线与圆的位置关系(共3小题)
6.(2022•徐州)如图,点A、B、C点圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.
(1)判断直线AD与圆O的位置关系,并说明理由;
(2)若圆的半径为6,求图中阴影部分的面积.
【解答】解:(1)直线AD与圆O相切,
连接OA,
∵AD∥BC,
∴∠D=∠DBC,
∵AD=AB,
∴∠D=∠ABD,
∴∠DBC=∠ABD=30°,
∠BAD=120°,
∵OA=OB,
∴∠BAO=∠ABD=30°,
∴∠OAD=90°,
∴OA⊥AD,
∵OA是圆的半径,
∴直线AD与圆O相切,
(2)连接OC,作OH⊥BC于H,
∵OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOC=120°,
∴OH=OB=3,BH=OH=3,
∴BC=2BH=6,
∴扇形OBC的面积为:==12π,
∵S△OBC=BC•OH=×6×3=9,
∴阴影部分的面积为:12π﹣9.
7.(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
(1)试判断AE与⊙O的位置关系,并说明理由;
(2)若AC=6,求阴影部分的面积.
【解答】(1)证明:连接OA、AD,如图,
∵CD为⊙O的直径,
∴∠DAC=90°,
又∵∠ADC=∠B=60°,
∴∠ACE=30°,
又∵AE=AC,OA=OD,
∴△ADO为等边三角形,
∴∠AEC=30°,∠ADO=∠DAO=60°,
∴∠EAD=30°,
∴∠EAD+∠DAO=90°,
∴∠EAO=90°,即OA⊥AE,
∴AE为⊙O的切线;
(2)解:由(1)可知△AEO为直角三角形,且∠E=30°,
∴OA=2,AE=6,
∴阴影部分的面积为×6×2﹣=6﹣2π.
故阴影部分的面积为6﹣2π.
8.(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若∠A=30°,OP=1,求图中阴影部分的面积.
【解答】解:(1)CB与⊙O相切,
理由:连接OB,
∵OA=OB,
∴∠OAB=∠OBA,
∵CP=CB,
∴∠CPB=∠CBP,
∵∠CPB=∠APO,
∴∠CBP=∠APO,
在Rt△AOP中,∵∠A+∠APO=90°,
∴∠OBA+∠CBP=90°,
即:∠OBC=90°,
∴OB⊥CB,
又∵OB是半径,
∴CB与⊙O相切;
(2)∵∠A=30°,∠AOP=90°,
∴∠APO=60°,
∴∠BPD=∠APO=60°,
∵PC=CB,
∴△PBC是等边三角形,
∴∠PCB=∠CBP=60°,
∴∠OBP=∠POB=30°,
∴OP=PB=PC=1,
∴BC=1,
∴OB==,
∴图中阴影部分的面积=S△OBC﹣S扇形OBD=1×﹣=﹣.
四.切线的性质(共1小题)
9.(2021•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,∠CAD=35°,连接BC.
(1)求∠B的度数;
(2)若AB=2,求的长.
【解答】解:(1)连接OC,如图,
∵CD是⊙O的切线,
∴OC⊥CD,
∵AE⊥CD,
∴OC∥AE,
∴∠CAD=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠CAD=∠OAC=35°,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠OAC+∠B=90°,
∴∠B=90°﹣∠OAC=90°﹣35°=55°;
(2)连接OE,
∵⊙O的直径AB=2,
∴OA=1,
∵=,
∴∠COE=2∠CAE=2×35°=70°,
∴的长为:=.
五.切线的判定与性质(共1小题)
10.(2020•盐城)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.
(1)求证:CD是⊙O的切线;
(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.
【解答】证明:(1)连接OC,
∵OC=OA,
∴∠OCA=∠A,
∵AB是⊙O的直径,
∴∠BCA=90°,
∴∠A+∠B=90°,
∵∠DCA=∠B,
∴∠OCA+∠DCA=∠OCD=90°,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)∵∠OCA+∠DCA=90°,∠OCA=∠A,
∴∠A+∠DCA=90°,
∵DE⊥AB,
∴∠A+∠EFA=90°,
∴∠DCA=∠EFA,
∵∠EFA=∠DFC,
∴∠DCA=∠DFC,
∴△DCF是等腰三角形.
六.弧长的计算(共1小题)
11.(2022•泰州)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.
(1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;
(2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.
【解答】解:(1)设BC与⊙O交于点M,
当t=2.5时,BE=2.5,
∵EF=10,
∴OE=EF=5,
∴OB=2.5,
∴EB=OB,
在矩形ABCD中,∠ABC=90°,
∴ME=MO,
又∵MO=EO,
∴ME=EO=MO,
∴△MOE是等边三角形,
∴∠EOM=60°,
∴==,
即半圆O在矩形ABCD内的弧的长度为;
(2)连接GO,HO,
∵∠GOH=90°,
∴∠AOG+∠BOH=90°,
∵∠AGO+∠AOG=90°,
∴∠AGO=∠BOH,
在△AGO和△OBH中,
,
∴△AGO≌△BOH(AAS),
∴OB=AG=t﹣5,
∵AB=7,
∴AE=t﹣7,
∴AO=5﹣(t﹣7)=12﹣t,
在Rt△AGO中,AG2+AO2=OG2,
∴(t﹣5)2+(12﹣t)2=52,
解得:t1=8,t2=9,
即t的值为8或9.
七.扇形面积的计算(共1小题)
12.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.
(1)试判断CD与⊙B的位置关系,并说明理由;
(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.
【解答】解:(1)过点B作BF⊥CD,垂足为F,
∵AD∥BC,
∴∠ADB=∠CBD,
∵CB=CD,
∴∠CBD=∠CDB,
∴∠ADB=∠CDB.
在△ABD和△FBD中,
,
∴△ABD≌△FBD(AAS),
∴BF=BA,则点F在圆B上,
∴CD与⊙B相切;
(2)∵∠BCD=60°,CB=CD,
∴△BCD是等边三角形,
∴∠CBD=60°
∵BF⊥CD,
∴∠ABD=∠DBF=∠CBF=30°,
∴∠ABF=60°,
∵AB=BF=,
∴AD=DF=AB·tan30°=2,
∴阴影部分的面积=S△ABD﹣S扇形ABE
=
=.
第5章二次函数解答题-中档题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏): 这是一份第5章二次函数解答题-中档题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共27页。试卷主要包含了图象的顶点在y轴右侧,三点,对称轴是直线x=1等内容,欢迎下载使用。
第24章+圆(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第24章+圆(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共28页。试卷主要包含了CD=5m等内容,欢迎下载使用。
第5章二次函数解答题-压轴题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏): 这是一份第5章二次函数解答题-压轴题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共36页。试卷主要包含了,与y轴交于点C,顶点为D,,与y轴交于点C,两点,,交y轴于点C等内容,欢迎下载使用。