|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年人教版九年级数学上学期期末复习培优练习(天津中考真题)
    立即下载
    加入资料篮
    2022-2023学年人教版九年级数学上学期期末复习培优练习(天津中考真题)01
    2022-2023学年人教版九年级数学上学期期末复习培优练习(天津中考真题)02
    2022-2023学年人教版九年级数学上学期期末复习培优练习(天津中考真题)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年人教版九年级数学上学期期末复习培优练习(天津中考真题)

    展开
    这是一份2022-2023学年人教版九年级数学上学期期末复习培优练习(天津中考真题),共33页。试卷主要包含了,有下列结论,和点B,,顶点为D等内容,欢迎下载使用。

    九年级数学上学期期末复习培优综合练习 -人教版九年级中考数学真题汇编(天津)
    一.解一元二次方程-因式分解法(共1小题)
    1.(2022•天津)方程x2+4x+3=0的两个根为(  )
    A.x1=1,x2=3 B.x1=﹣1,x2=3
    C.x1=1,x2=﹣3 D.x1=﹣1,x2=﹣3
    二.反比例函数图象上点的坐标特征(共3小题)
    2.(2022•天津)若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是(  )
    A.x1<x2<x3 B.x2<x3<x1 C.x1<x3<x2 D.x2<x1<x3
    3.(2021•天津)若点A(﹣5,y1),B(1,y2),C(5,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y2
    4.(2020•天津)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是(  )
    A.x1<x2<x3 B.x2<x3<x1 C.x1<x3<x2 D.x3<x1<x2
    三.二次函数图象与系数的关系(共3小题)
    5.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:
    ①2a+b<0;
    ②当x>1时,y随x的增大而增大;
    ③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    6.(2021•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(﹣1,﹣1),(0,1),当x=﹣2时,与其对应的函数值y>1.有下列结论:
    ①abc>0;
    ②关于x的方程ax2+bx+c﹣3=0有两个不等的实数根;
    ③a+b+c>7.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    7.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:
    ①abc>0;
    ②关于x的方程ax2+bx+c=a有两个不等的实数根;
    ③a<﹣.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    四.二次函数综合题(共4小题)
    8.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.
    (Ⅰ)若b=﹣2,c=﹣3,
    ①求点P的坐标;
    ②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;
    (Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.
    9.(2021•天津)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.
    (Ⅰ)如图①,求点B的坐标;
    (Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.
    ①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;
    ②当≤t≤时,求S的取值范围(直接写出结果即可).
    10.(2021•天津)已知抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),顶点为D.
    (Ⅰ)当a=1时,求该抛物线的顶点坐标;
    (Ⅱ)当a>0时,点E(0,1+a),若DE=2DC,求该抛物线的解析式;
    (Ⅲ)当a<﹣1时,点F(0,1﹣a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,﹣1)是直线l上的动点.当a为何值时,FM+DN的最小值为2,并求此时点M,N的坐标.
    11.(2020•天津)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.
    (Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;
    (Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.
    ①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;
    ②取EF的中点N,当m为何值时,MN的最小值是?
    五.圆周角定理(共1小题)
    12.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.
    (Ⅰ)线段AC的长等于    ;
    (Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明)    .

    六.切线的性质(共3小题)
    13.(2022•天津)已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA,CB.
    (Ⅰ)如图①,若C为的中点,求∠CAB的大小和AC的长;
    (Ⅱ)如图②,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,求FD的长.


    14.(2021•天津)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.
    (Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;
    (Ⅱ)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.

    15.(2020•天津)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.
    (Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;
    (Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.

    七.旋转的性质(共3小题)
    16.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是(  )

    A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC
    17.(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是(  )

    A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD
    18.(2020•天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是(  )

    A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF
    八.特殊角的三角函数值(共3小题)
    19.(2022•天津)tan45°的值等于(  )
    A.2 B.1 C. D.
    20.(2021•天津)tan30°的值等于(  )
    A. B. C.1 D.2
    21.(2020•天津)2sin45°的值等于(  )
    A.1 B. C. D.2
    九.解直角三角形的应用(共1小题)
    22.(2020•天津)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).
    参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.

    一十.解直角三角形的应用-仰角俯角问题(共1小题)
    23.(2022•天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).
    参考数据:tan35°≈0.70,tan42°≈0.90.

    一十一.解直角三角形的应用-方向角问题(共1小题)
    24.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.

    一十二.简单组合体的三视图(共3小题)
    25.(2022•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B. C. D.
    26.(2021•天津)如图是一个由6个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    27.(2020•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    一十三.概率公式(共3小题)
    28.(2022•天津)不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是    .
    29.(2021•天津)不透明袋子中装有7个球,其中有3个红球、4个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是    .
    30.(2020•天津)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是   .

    九年级数学上学期期末复习培优综合练习 -人教版九年级中考数学真题汇编(天津)
    参考答案与试题解析
    一.解一元二次方程-因式分解法(共1小题)
    1.(2022•天津)方程x2+4x+3=0的两个根为(  )
    A.x1=1,x2=3 B.x1=﹣1,x2=3
    C.x1=1,x2=﹣3 D.x1=﹣1,x2=﹣3
    【解答】解:x2+4x+3=0,
    (x+3)(x+1)=0,
    x+3=0或x+1=0,
    x1=﹣3,x2=﹣1,
    故选:D.
    二.反比例函数图象上点的坐标特征(共3小题)
    2.(2022•天津)若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是(  )
    A.x1<x2<x3 B.x2<x3<x1 C.x1<x3<x2 D.x2<x1<x3
    【解答】解:点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,
    ∴x1==4,x2==﹣8,x3==2.
    ∴x2<x3<x1,
    故选:B.
    3.(2021•天津)若点A(﹣5,y1),B(1,y2),C(5,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y2
    【解答】解:∵反比例函数y=﹣中,k=﹣5<0,
    ∴函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大.
    ∵﹣5<0,0<1<5,
    ∴点A(﹣5,y1)在第二象限,点B(1,y2),C(5,y3)在第四象限,
    ∴y2<y3<y1.
    故选:B.
    4.(2020•天津)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是(  )
    A.x1<x2<x3 B.x2<x3<x1 C.x1<x3<x2 D.x3<x1<x2
    【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,
    ∴﹣5=,即x1=﹣2,
    2=,即x2=5;
    5=,即x3=2,
    ∵﹣2<2<5,
    ∴x1<x3<x2;
    故选:C.
    三.二次函数图象与系数的关系(共3小题)
    5.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:
    ①2a+b<0;
    ②当x>1时,y随x的增大而增大;
    ③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    【解答】解:①∵抛物线y=ax2+bx+c经过点(1,0),
    ∴a+b+c=0,
    ∵a<c,
    ∴a+b+a<0,即2a+b<0,本小题结论正确;
    ②∵a+b+c=0,0<a<c,
    ∴b<0,
    ∴对称轴x=﹣>1,
    ∴当1<x<﹣时,y随x的增大而减小,本小题结论错误;
    ③∵a+b+c=0,
    ∴b+c=﹣a,
    对于方程ax2+bx+(b+c)=0,Δ=b2﹣4×a×(b+c)=b2+4a2>0,
    ∴方程ax2+bx+(b+c)=0有两个不相等的实数根,本小题结论正确;
    故选:C.
    6.(2021•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(﹣1,﹣1),(0,1),当x=﹣2时,与其对应的函数值y>1.有下列结论:
    ①abc>0;
    ②关于x的方程ax2+bx+c﹣3=0有两个不等的实数根;
    ③a+b+c>7.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    【解答】解:①∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(﹣1,﹣1),(0,1),
    ∴c=1,a﹣b+c=﹣1,
    ∴a=b﹣2,
    ∵当x=﹣2时,与其对应的函数值y>1.
    ∴4a﹣2b+1>1,
    ∴4(b﹣2)﹣2b+1>1,解得:b>4,
    ∴a=b﹣2>0,
    ,∴abc>0,故①正确;
    ②∵a=b﹣2,c=1,
    ∴(b﹣2)x2+bx+1﹣3=0,即∴(b﹣2)x2+bx﹣2=0,
    ∴Δ=b2﹣4×(﹣2)×(b﹣2)=b2+8b﹣16=b(b+8)﹣16,
    ∵b>4,
    ∴Δ>0,
    ∴关于x的方程ax2+bx+c﹣3=0有两个不等的实数根,故②正确;
    ③∵a=b﹣2,c=1,
    ∴a+b+c=b﹣2+b+1=2b﹣1,
    ∵b>4,
    ∴2b﹣1>7,
    ∴a+b+c>7.
    故③正确;
    故选:D.
    7.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:
    ①abc>0;
    ②关于x的方程ax2+bx+c=a有两个不等的实数根;
    ③a<﹣.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    【解答】解:∵抛物线的对称轴为直线x=,
    ∴点(2,0)关于直线x=的对称点的坐标为(﹣1,0),
    ∵c>1,
    ∴抛物线开口向下,
    ∴a<0,
    ∵抛物线对称轴为直线x=,
    ∴ab<0,
    ∴abc<0,故①错误;
    ∵抛物线开口向下,与x轴有两个交点,
    ∴顶点在x轴的上方,
    ∵a<0,
    ∴抛物线与直线y=a有两个交点,
    ∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;
    ∵抛物线y=ax2+bx+c经过点(2,0),
    ∴4a+2b+c=0,
    ∵b=﹣a,
    ∴4a﹣2a+c=0,即2a+c=0,
    ∴﹣2a=c,
    ∵c>1,
    ∴﹣2a>1,
    ∴a<﹣,故③正确,
    故选:C.
    四.二次函数综合题(共4小题)
    8.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.
    (Ⅰ)若b=﹣2,c=﹣3,
    ①求点P的坐标;
    ②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;
    (Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.
    【解答】解:(Ⅰ)①若b=﹣2,c=﹣3,
    则抛物线y=ax2+bx+c=ax2﹣2x﹣3,
    ∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),
    ∴a+2﹣3=0,解得a=1,
    ∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴顶点P的坐标为(1,﹣4);
    ②当y=0时,x2﹣2x﹣3=0,
    解得x1=﹣1,x2=3,
    ∴B(3,0),
    设直线BP的解析式为y=kx+n,
    ∴,解得,
    ∴直线BP的解析式为y=2x﹣6,
    ∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,
    设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),
    ∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,
    ∴当m=2时,MG取得最大值1,
    此时,点M(2,﹣3),则G(2,﹣2);

    (Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),
    ∴a﹣b+c=0,
    又3b=2c,
    b=﹣2a,c=﹣3a(a>0),
    ∴抛物线的解析式为y=ax2﹣2ax﹣3a.
    ∴y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
    ∴顶点P的坐标为(1,﹣4a),
    ∵直线x=2与抛物线相交于点N,
    ∴点N的坐标为(2,﹣3a),
    作点P关于y轴的对称点P',作点N关于x轴的对称点N',

    得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),
    当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.
    延长P'P与直线x=2相交于点H,则P'H⊥N'H.
    在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.
    ∴P'N′2=P'H2+HN′2=9+49a2=25.
    解得a1=,a2=﹣(舍).
    ∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).
    ∴直线P'N′的解析式为y=x﹣.
    ∴点E(,0),点F(0,﹣).
    9.(2021•天津)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.
    (Ⅰ)如图①,求点B的坐标;
    (Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.
    ①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;
    ②当≤t≤时,求S的取值范围(直接写出结果即可).
    【解答】解:(Ⅰ)如图①,过点B作BH⊥OA,垂足为H,
    由点A(4,0),得OA=4,
    ∵BO=BA,∠OBA=90°,
    ∴OH=BH=OA==2,
    ∴点B的坐标为(2,2);
    (Ⅱ)①由点E(﹣,0),
    得OE=,
    由平移知,四边形O'C'D'E'是矩形,
    得∠O'E'D'=90°,O'E'=OE=,
    ∴OE'=OO'﹣O'E'=t﹣,∠FE'O=90°,
    ∵BO=BA,∠OBA=90°,
    ∴∠BOA=∠BAO=45°,
    ∴∠OFE'=90°﹣∠BOA=45°,
    ∴∠FOE'=∠OFE',
    ∴FE'=OE'=t﹣,
    ∴S△FOE'=OE'•FE'=(t﹣)2,
    ∴S=S△OAB﹣S△FOE'=,
    即S=﹣t2+t﹣(4≤t<);
    ②a.当4<t≤时,由①知S=﹣t2+t﹣=﹣(t﹣)2+4,
    ∴当t=4时,S有最大值为,当t=时,S有最小值为,
    ∴此时≤S<;
    b.当<t≤4时,如图2,令O'C'与AB交于点M,D'E'与DB交于点N,
    ∴S=S△OAB﹣S△OE'N﹣S△O'AM=4﹣(t﹣)2﹣(4﹣t)2=﹣t2+t﹣=﹣(t﹣)2+,
    此时,当t=时,S有最大值为,当t=4时,S有最小值为,
    ∴≤S≤;
    c.当≤t≤时,如图3,令O'C'与AB交于点M,此时点D'位于第二象限,
    ∴S=S△OAB﹣S△O'AM=4﹣(4﹣t)2=﹣t2+4t﹣4=﹣(t﹣4)2+4,
    此时,当t=时,S有最小值为,当t=时,S有最大值为,
    ∴≤S≤;
    综上,S的取值范围为≤S≤;
    ∴S的取值范围为≤S≤.



    10.(2021•天津)已知抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),顶点为D.
    (Ⅰ)当a=1时,求该抛物线的顶点坐标;
    (Ⅱ)当a>0时,点E(0,1+a),若DE=2DC,求该抛物线的解析式;
    (Ⅲ)当a<﹣1时,点F(0,1﹣a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,﹣1)是直线l上的动点.当a为何值时,FM+DN的最小值为2,并求此时点M,N的坐标.
    【解答】解:抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),则c=﹣1,
    (Ⅰ)当a=1时,抛物线的表达式为y=x2﹣2x﹣1=(x﹣1)2﹣2,
    故抛物线的顶点坐标为(1,﹣2);

    (Ⅱ)∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1,
    故点D(1,﹣a﹣1),
    由DE=2DC得:DE2=8CD2,
    即(1﹣0)2+(a+1+a+1)2=8[(1﹣0)2+(﹣a﹣1+1)2],
    解得a=或,
    故抛物线的表达式为y=x2﹣x﹣1或y=x2﹣3x﹣1;

    (Ⅲ)将点D向左平移3个单位,向上平移1个单位得到点D′(﹣2,﹣a),
    作点F关于x轴的对称点F′,则点F′的坐标为(0,a﹣1),

    当满足条件的点M落在F′D′上时,由图象的平移知DN=D′M,故此时FM+ND最小,理由:
    ∵FM+ND=F′M+D′M=F′D′为最小,即F′D′=2,
    则F′D′2=F′H2+D′H2=(1﹣2a)2+4=(2)2,
    解得a=(舍去)或﹣,
    则点D′、F′的坐标分别为(﹣2,)、(0,﹣),
    由点D′、F′的坐标得,直线D′F′的表达式为y=﹣3x﹣,
    当y=0时,y=﹣3x﹣=0,解得x=﹣=m,
    则m+3=,
    即点M的坐标为(﹣,0)、点N的坐标为(,﹣1).
    11.(2020•天津)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.
    (Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;
    (Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.
    ①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;
    ②取EF的中点N,当m为何值时,MN的最小值是?
    【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.
    ∵抛物线经过点A(1,0),
    ∴0=1+b﹣3,
    解得b=2,
    ∴抛物线的解析式为y=x2+2x﹣3.
    ∵y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线的顶点坐标为(﹣1,﹣4).
    (Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,
    ∴0=a+b+m,0=am2+bm+m,即am+b+1=0.
    ∴a=1,b=﹣m﹣1.
    ∴抛物线的解析式为y=x2﹣(m+1)x+m.
    根据题意得,点C(0,m),点E(m+1,m),
    过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).

    在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,
    ∴AE==﹣m,
    ∵AE=EF=2,
    ∴﹣m=2,
    解得m=﹣2.
    此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.
    ∵点F在y轴上,
    ∴在Rt△EFC中,CF==.
    ∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).
    ②由N是EF的中点,连接CN,CM,得CN=EF=.
    根据题意,点N在以点C为圆心、为半径的圆上,
    由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,
    ∴在Rt△MCO中,MC==﹣m.
    当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.
    MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;
    当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,
    解得m=﹣.
    ∴当m的值为﹣或﹣时,MN的最小值是.
    五.圆周角定理(共1小题)
    12.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.
    (Ⅰ)线段AC的长等于   ;
    (Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明)  取BC与网格线的交点D,连接OD延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC交BE的延长线于F,连接FG延长FG交AB于点P,点P即为所求 .

    【解答】解:(Ⅰ)AC==.
    故答案为:.
    (Ⅱ)如图,点P即为所求.

    故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BFA的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△FAP≌△BAC,则点P即为所求.
    六.切线的性质(共3小题)
    13.(2022•天津)已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA,CB.
    (Ⅰ)如图①,若C为的中点,求∠CAB的大小和AC的长;
    (Ⅱ)如图②,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,求FD的长.


    【解答】解:(Ⅰ)∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∵C为的中点,
    ∴=,
    ∴∠CAB=∠CBA=45°,
    ∴AC=AB•cos∠CAB=3;
    (Ⅱ)∵DF是⊙O的切线,
    ∴OD⊥DF,
    ∵OD⊥BC,∠FCB=90°,
    ∴四边形FCED为矩形,
    ∴FD=EC,
    在Rt△ABC中,∠ACB=90°,AC=2,AB=6,
    则BC==4,
    ∵OD⊥BC,
    ∴EC=BC=2,
    ∴FD=2.
    14.(2021•天津)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.
    (Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;
    (Ⅱ)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.

    【解答】解:(Ⅰ)如图①,∵AB=AC,
    ∴∠ABC=∠ACB=(180°﹣∠BAC)=×(180°﹣42°)=69°,
    ∵BD为直径,
    ∴∠BCD=90°,
    ∵∠D=∠BAC=42°,
    ∴∠DBC=90°﹣∠D=90°﹣42°=48°;
    ∴∠ACD=∠ABD=∠ABC﹣∠DBC=69°﹣48°=21°;
    (Ⅱ)如图②,连接OD,
    ∵CD∥AB,
    ∴∠ACD=∠BAC=42°,
    ∵四边形ABCD为⊙O的内接四边形,
    ∴∠B+∠ADC=180°,
    ∴∠ADC=180°﹣∠B=180°﹣69°=111°,
    ∴∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣42°﹣111°=27°,
    ∴∠COD=2∠CAD=54°,
    ∵DE为切线,
    ∴OD⊥DE,
    ∴∠ODE=90°,
    ∴∠E=90°﹣∠DOE=90°﹣54°=36°.

    15.(2020•天津)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.
    (Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;
    (Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.

    【解答】解:(1)∵∠APC是△PBC的一个外角,
    ∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,
    由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠ABC=63°,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;
    (2)连接OD,如图②所示:
    ∵CD⊥AB,
    ∴∠CPB=90°,
    ∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,
    ∵DE是⊙O的切线,
    ∴DE⊥OD,
    ∴∠ODE=90°,
    ∵∠BOD=2∠PCB=54°,
    ∴∠E=90°﹣∠BOD=90°﹣54°=36°.


    七.旋转的性质(共3小题)
    16.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是(  )

    A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC
    【解答】解:A、∵AB=AC,
    ∴AB>AM,
    由旋转的性质可知,AN=AM,
    ∴AB>AN,故本选项结论错误,不符合题意;
    B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;
    C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,
    ∵AM=AN,AB=AC,
    ∴∠ABC=∠AMN,
    ∴∠AMN=∠ACN,本选项结论正确,符合题意;
    D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;
    故选:C.
    17.(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是(  )

    A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD
    【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,
    ∵点A,D,E在同一条直线上,
    ∴∠ADC=60°,
    ∴△ADC为等边三角形,
    ∴∠DAC=60°,
    ∴∠BAD=60°=∠ADC,
    ∴AB∥CD,
    故选:D.
    18.(2020•天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是(  )

    A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF
    【解答】解:由旋转可得,△ABC≌△DEC,
    ∴AC=DC,故A选项错误,
    BC=EC,故B选项错误,
    ∠AEF=∠DEC=∠B,故C选项错误,
    ∠A=∠D,
    又∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∴∠D+∠B=90°,
    ∴∠BFD=90°,即DF⊥AB,故D选项正确,
    故选:D.

    八.特殊角的三角函数值(共3小题)
    19.(2022•天津)tan45°的值等于(  )
    A.2 B.1 C. D.
    【解答】解:tan45°的值等于1,
    故选:B.
    20.(2021•天津)tan30°的值等于(  )
    A. B. C.1 D.2
    【解答】解:tan30°=.
    故选:A.
    21.(2020•天津)2sin45°的值等于(  )
    A.1 B. C. D.2
    【解答】解:2sin45°=2×=.
    故选:B.
    九.解直角三角形的应用(共1小题)
    22.(2020•天津)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).
    参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.

    【解答】解:如图,过点A作AD⊥BC,垂足为D,
    在Rt△ACD中,
    ∵∠ACB=45°,
    ∴AD=CD,
    设AB=xm,
    在Rt△ADB中,
    ∵sin∠ABC=,
    ∴AD=AB•sin58°≈0.85x,
    又∵cos∠ABC=,
    ∴BD=AB•cos58°≈0.53x,
    又∵BC=221m,即CD+BD=221m,
    ∴0.85x+0.53x=221,
    解得,x≈160(m),
    答:AB的长约为160m.

    一十.解直角三角形的应用-仰角俯角问题(共1小题)
    23.(2022•天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).
    参考数据:tan35°≈0.70,tan42°≈0.90.

    【解答】解:设AP=x米,
    在Rt△APB中,∠APB=35°,
    ∴AB=AP•tan35°≈0.7x(米),
    ∵BC=32米,
    ∴AC=AB+BC=(32+0.7x)米,
    在Rt△APC中,∠APC=42°,
    ∴tan42°==≈0.9,
    ∴x=160,
    经检验:x=160是原方程的根,
    ∴AB=0.7x=112(米),
    ∴这座山AB的高度约为112米.
    一十一.解直角三角形的应用-方向角问题(共1小题)
    24.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.

    【解答】解:如图,过点B作BH⊥AC,垂足为H,
    由题意得,∠BAC=60°,∠BCA=40°,AC=257海里,
    在Rt△ABH中,
    ∵tan∠BAH=,cos∠BAH=,
    ∴BH=AH•tan60°=AH,AB==2AH,
    在Rt△BCH中,
    ∵tan∠BCH=,
    ∴CH==(海里),
    又∵CA=CH+AH,
    ∴257=+AH,
    所以AH=(海里),
    ∴AB=≈=168(海里),
    答:AB的长约为168海里.

    一十二.简单组合体的三视图(共3小题)
    25.(2022•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B. C. D.
    【解答】解:从正面看底层是两个正方形,左边是三个正方形,
    则立体图形的主视图是A中的图形,
    故选:A.
    26.(2021•天津)如图是一个由6个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    【解答】解:从正面看,从左到右有三列,每列的小正方形的个数分别为1、2、2.
    故选:D.
    27.(2020•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    【解答】解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.
    故选:D.
    一十三.概率公式(共3小题)
    28.(2022•天津)不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是   .
    【解答】解:∵不透明袋子中装有9个球,其中有7个绿球、2个白球,
    ∴从袋子中随机取出1个球,则它是绿球的概率是 ,
    故答案为:.
    29.(2021•天津)不透明袋子中装有7个球,其中有3个红球、4个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是   .
    【解答】解:∵袋子中共有7个球,其中红球有3个,
    ∴从袋子中随机取出1个球,它是红球的概率是,
    故答案为:.
    30.(2020•天津)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是  .
    【解答】解:∵袋子中装有8个小球,其中红球有3个,
    ∴从袋子中随机取出1个球,则它是红球的概率是.
    故答案为:.

    相关试卷

    2022-2023学年湘教版九年级数学上学期期末复习培优练习(湖南邵阳中考真题): 这是一份2022-2023学年湘教版九年级数学上学期期末复习培优练习(湖南邵阳中考真题),共24页。试卷主要包含了在抛物线上等内容,欢迎下载使用。

    2022-2023学年苏科版九年级数学上学期期末复习培优练习(江苏扬州中考真题): 这是一份2022-2023学年苏科版九年级数学上学期期末复习培优练习(江苏扬州中考真题),共27页。试卷主要包含了,与y轴交于点C等内容,欢迎下载使用。

    第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州): 这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共36页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map