![2022-2023学年湘教版九年级数学上学期期末复习培优练习(湖南邵阳中考真题)第1页](http://img-preview.51jiaoxi.com/2/3/13542214/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年湘教版九年级数学上学期期末复习培优练习(湖南邵阳中考真题)第2页](http://img-preview.51jiaoxi.com/2/3/13542214/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年湘教版九年级数学上学期期末复习培优练习(湖南邵阳中考真题)第3页](http://img-preview.51jiaoxi.com/2/3/13542214/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022-2023学年湘教版九年级数学上学期期末复习培优练习(湖南邵阳中考真题)
展开
这是一份2022-2023学年湘教版九年级数学上学期期末复习培优练习(湖南邵阳中考真题),共24页。试卷主要包含了在抛物线上等内容,欢迎下载使用。
九年级数学上学期期末复习培优综合练习 -湘教版九年级中考数学真题汇编(湖南邵阳)
一.根的判别式(共1小题)
1.(2021•邵阳)在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x的方程mx2+x+1=0的实数根的个数为( )
A.0个 B.1个 C.2个 D.1或2个
二.根与系数的关系(共1小题)
2.(2020•邵阳)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为( )
A.3 B.﹣ C. D.﹣2
三.反比例函数系数k的几何意义(共2小题)
3.(2022•邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是( )
A.1 B. C.2 D.
4.(2020•邵阳)如图,已知点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥y轴于点B,△OAB的面积是2.则k的值是 .
四.反比例函数图象上点的坐标特征(共1小题)
5.(2021•邵阳)已知点A(1,y1),B(2,y2)为反比例函数y=图象上的两点,则y1与y2的大小关系是y1 y2.(填“>”“=”或“<”)
五.二次函数综合题(共3小题)
6.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.
(1)求该抛物线的表达式.
(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.
(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.
7.(2021•邵阳)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).
(1)求抛物线C的对称轴.
(2)当a=﹣1时,将抛物线C向左平移2个单位,再向下平移1个单位,得到抛物线C1.
①求抛物线C1的解析式.
②设抛物线C1与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,连接BC.点D为第一象限内抛物线C1上一动点,过点D作DE⊥OA于点E.设点D的横坐标为m.是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
8.(2020•邵阳)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;
(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.
六.圆周角定理(共1小题)
9.(2021•邵阳)如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB的大小为( )
A.25° B.30° C.35° D.40°
七.三角形的外接圆与外心(共1小题)
10.(2022•邵阳)如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是( )
A. B. C. D.
八.切线的性质(共1小题)
11.(2022•邵阳)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.
(1)求∠ACB的度数;
(2)若⊙O的半径为3,求圆弧的长.
九.切线的判定与性质(共1小题)
12.(2020•邵阳)如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.
(1)求证:AC是⊙O的切线;
(2)若AC=4,求⊙O的半径.
一十.相似三角形的判定(共1小题)
13.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件 ,使△ADE∽△ABC.
一十一.解直角三角形的应用-坡度坡角问题(共1小题)
14.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程﹣﹣邵阳资水犬木塘水库,将于2020年开工建设,施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB,BC表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔AA1,BB1,CC1分别为62m,200m,550m.若管道AB与水平线AA2的夹角为30°,管道BC与水平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).
一十二.解直角三角形的应用-方向角问题(共1小题)
15.(2022•邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈1.414,≈1.732)
一十三.简单几何体的三视图(共2小题)
16.(2022•邵阳)下列四个图形中,圆柱体的俯视图是( )
A. B.
C. D.
17.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是( )
A. B.
C. D.
一十四.列表法与树状图法(共2小题)
18.(2022•邵阳)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )
A.1 B. C. D.
19.(2021•邵阳)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是 .
一十五.利用频率估计概率(共1小题)
20.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )
A.6m2 B.7m2 C.8m2 D.9m2
九年级数学上学期期末复习培优综合练习 -湘教版九年级中考数学真题汇编(湖南邵阳)
参考答案与试题解析
一.根的判别式(共1小题)
1.(2021•邵阳)在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x的方程mx2+x+1=0的实数根的个数为( )
A.0个 B.1个 C.2个 D.1或2个
【解答】解:∵直线y=﹣x+m不经过第一象限,
∴m≤0,
当m=0时,方程mx2+x+1=0是一次方程,有一个根,
当m<0时,
∵关于x的方程mx2+x+1=0,
∴Δ=12﹣4m>0,
∴关于x的方程mx2+x+1=0有两个不相等的实数根,
故选:D.
二.根与系数的关系(共1小题)
2.(2020•邵阳)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为( )
A.3 B.﹣ C. D.﹣2
【解答】解:由x2﹣3x+2=0可知,其二次项系数a=1,一次项系数b=﹣3,
由根与系数的关系:x1+x2=﹣=﹣=3.
故选:A.
三.反比例函数系数k的几何意义(共2小题)
3.(2022•邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是( )
A.1 B. C.2 D.
【解答】解:∵A(x,y),
∴OB=x,AB=y,
∵A为反比例函数y=图象上一点,
∴xy=1,
∴S△ABO=AB•OB=xy=1=,
故选:B.
4.(2020•邵阳)如图,已知点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥y轴于点B,△OAB的面积是2.则k的值是 4 .
【解答】解:设点A的坐标为(xA,yA),AB⊥y轴,
由题意可知:,
∴yA•xA=4,
又点A在反比例函数图象上,
故有k=xA•yA=4.
故答案为:4.
四.反比例函数图象上点的坐标特征(共1小题)
5.(2021•邵阳)已知点A(1,y1),B(2,y2)为反比例函数y=图象上的两点,则y1与y2的大小关系是y1 > y2.(填“>”“=”或“<”)
【解答】解:∵反比例函数y=中,k=3>0,
∴函数图象的两个分支分别位于第一、三象限,且在每一象限内y随x的增大而减小.
∵A(1,y1),B(2,y2),
∴点A、B都在第一象限,
又1<2,
∴y1>y2,
故答案为:>.
五.二次函数综合题(共3小题)
6.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.
(1)求该抛物线的表达式.
(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.
(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.
【解答】解:在直线y=2x+2中,
当x=0时,y=2,
当y=0时,x=﹣1,
∴点A的坐标为(﹣1,0),点B的坐标为(0,2),
把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,
,
解得,
∴抛物线的解析式为y=﹣x2+x+2;
(2)①当△AOB≌△DPC时,AO=DP,
又∵四边形OPDE为正方形,
∴DP=OP=AO=1,
此时点P的坐标为(1,0),
②当△AOB≌△CPD时,OB=DP,
又∵四边形OPDE为正方形,
∴DP=OP=OB=2,
此时点P的坐标为(2,0),
综上,点P的坐标为(1,0)或(2,0);
(3)如图,
点D′在以点P为圆心,DP为半径的圆上运动,
∴当点D′′,点P,点C三点共线时,CD′′有最小值,
由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),
∴CD′′的最小值为1.
7.(2021•邵阳)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).
(1)求抛物线C的对称轴.
(2)当a=﹣1时,将抛物线C向左平移2个单位,再向下平移1个单位,得到抛物线C1.
①求抛物线C1的解析式.
②设抛物线C1与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,连接BC.点D为第一象限内抛物线C1上一动点,过点D作DE⊥OA于点E.设点D的横坐标为m.是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
【解答】解:(1)∵点(1,1)和(4,1)的纵坐标相同,
故上述两点关于抛物线对称轴对称,
故抛物线的对称轴为直线x=(1+4)=;
(2)①由题意得:,解得,
故原抛物线的表达式为y=﹣x2+5x﹣3;
由平移的性质得,平移后的抛物线表达式为y=﹣(x+2)2+5(x+2)﹣3﹣1=﹣x2+x+2;
②存在,理由:
令y=﹣x2+x+2=0,解得x=﹣1或2,令x=0,则y=2,
故点B、A的坐标分别为(﹣1,0)、(2,0),点C(0,2);
∵tan∠BCO=,
同理可得:tan∠CBO=2,
当以点O,D,E为顶点的三角形与△BOC相似时,
则tan∠DOE=2或,
设点D的坐标为(m,﹣m2+m+2),
则tan∠DOE===2或,
解得:m=﹣2(舍去)或1或(舍去)或,
故m=1或.
8.(2020•邵阳)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;
(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.
【解答】解:(1)将C(8,0),B(0,6)代入,得,
解得,
∴抛物线的解析式为:;
(2)如答图1,作DE⊥x轴于点E,
∵C(8,0),B(0,6),
∴OC=8,OB=6.
∴BC=10.
∵∠BOC=∠BCD=∠DEC,
∴△BOC∽△CED.
∴.
∴CE=3,DE=4.
∴OE=OC+CE=11.
∴D(11,4).
(3)若点M在DA上运动时,DM=5t,ON=4t,
当△BON∽△CDM,则,即不成立,舍去;
当△BON∽△MDC,则,即,解得:;
若点M在BC上运动时,CM=25﹣5t.
当△BON∽△MCD,则,即,
∴.
当3<t≤4时,ON=16﹣4t.
∴,
解得t1=(舍去),t2=.
当4<t≤5时,ON=4t﹣16
∴,无解;
当△BON∽△DCM,则,即,
∴ON=30﹣6t;
当3<t≤4时,ON=16﹣4t,
∴30﹣6t=16﹣4t,
解得t=7(舍去);
当4<t≤5时,ON=4t﹣16,
∴30﹣6t=4t﹣16,
解得.
综上所示:当时,△BON∽△MDC;t=时,△BON∽△MCD;时,△BON∽△DCM;
(4)如答图2,作点D关于x轴的对称点F,连接QF交x轴于点N,
∵点D(11,4),
∴点F(11,﹣4).
由得对称轴为x=5,
∴点Q(5,4).
∴,.
∴.
故A'Q+QN+DN的最小值为.
六.圆周角定理(共1小题)
9.(2021•邵阳)如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB的大小为( )
A.25° B.30° C.35° D.40°
【解答】解:∵∠BAC与∠BOC所对弧为,
由圆周角定理可知:∠BOC=2∠BAC=60°,
又∠AOC=90°,
∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.
故选:B.
七.三角形的外接圆与外心(共1小题)
10.(2022•邵阳)如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是( )
A. B. C. D.
【解答】解:连接OB,过点O作OE⊥BC,
∵⊙O是等边△ABC的外接圆,
∴OB平分∠ABC,
∴∠OBE=30°,
又∵OE⊥BC,
∴BE=BC=AB=,
在Rt△OBE中,cos30°=,
∴,
解得:OB=,
故选:C.
八.切线的性质(共1小题)
11.(2022•邵阳)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.
(1)求∠ACB的度数;
(2)若⊙O的半径为3,求圆弧的长.
【解答】解:(1)连接OA,
∵AB是⊙O的切线,点A为切点,
∴∠BAO=90°,
又∵AB=AC,OA=OC,
∴∠B=∠ACB=∠OAC,
设∠ACB=x°,则在△ABC中,
x°+x°+x°+90°=180°,
解得:x=30,
∴∠ACB的度数为30°;
(2)∵∠ACB=∠OAC=30°,
∴∠AOC=120°,
∴=2π.
九.切线的判定与性质(共1小题)
12.(2020•邵阳)如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.
(1)求证:AC是⊙O的切线;
(2)若AC=4,求⊙O的半径.
【解答】(1)证明:如图:连接OA,
∵OA=OB,
∴∠OBA=∠OAB,
∵AB=AC,
∴∠OBA=∠C,
∴∠OAB=∠C,
∵∠CAD=∠C,
∴∠OAB=∠CAD,
∵BD是直径,
∴∠BAD=90°,
∵∠OAC=∠BAD﹣∠OAB+∠CAD=90°,
∴AC是⊙O的切线;
(2)解:由(1)可知AC是⊙O的切线,
∴∠OAC=90°,∠AOD=2∠B,
∵AB=AC,
∴∠B=∠C,
∴∠AOC+∠C=2∠B+∠C=3∠C=90°,
∴∠B=∠C=30°,
在Rt△ABD中,BD===,
∴OB=,
∴⊙O的半径为.
一十.相似三角形的判定(共1小题)
13.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件 ∠ADE=∠B或∠AED=∠C或=(答案不唯一) ,使△ADE∽△ABC.
【解答】解:∵∠A=∠A,
∴当∠ADE=∠B或∠AED=∠C或=时,△ADE∽△ABC,
故答案为:∠ADE=∠B或∠AED=∠C或=(答案不唯一).
一十一.解直角三角形的应用-坡度坡角问题(共1小题)
14.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程﹣﹣邵阳资水犬木塘水库,将于2020年开工建设,施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB,BC表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔AA1,BB1,CC1分别为62m,200m,550m.若管道AB与水平线AA2的夹角为30°,管道BC与水平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).
【解答】解:根据题意知,四边形AA1B1O和四边形BB1C1B2均为矩形,
∴OB1=AA1=62m,B2C1=BB1=200m,
∴BO=BB1﹣OB1=200﹣62=138m,CB2=CC1﹣B2C1=550﹣200=350m,
在Rt△AOB中,∠AOB=90°,∠BAO=30°,BO=138m,
∴AB=2BO=2×138=276m;
在Rt△CBB2中,∠CB2B=90°,∠CBB2=45°,CB2=350m,
∴BC=CB2=350,
∴AB+BC=(276+350)m,
即管道AB和BC的总长度为:(276+350)m.
一十二.解直角三角形的应用-方向角问题(共1小题)
15.(2022•邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈1.414,≈1.732)
【解答】解:安全,理由如下:
过点C作CD垂直AB,
由题意可得,∠CAD=90°﹣60°=30°,∠CBD=90°﹣45°=45°,AB=30×1=30km,
在Rt△CBD中,设CD=BD=xkm,则AD=(x+30)km,
在Rt△ACD中,tan30°=,
∴,
∴,
解得:x=15+15≈40.98>40,
所以,这艘轮船继续向正东方向航行是安全的.
一十三.简单几何体的三视图(共2小题)
16.(2022•邵阳)下列四个图形中,圆柱体的俯视图是( )
A. B.
C. D.
【解答】解:从圆柱体的上面看到是视图是圆,
则圆柱体的俯视图是圆,
故选:D.
17.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是( )
A. B.
C. D.
【解答】解:A、球的三视图都是圆,故本选项符合题意;
B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;
C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;
D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意;
故选:A.
一十四.列表法与树状图法(共2小题)
18.(2022•邵阳)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )
A.1 B. C. D.
【解答】解:画树状图如下:
共有4种等可能的结果,其中出现(正,正)的结果有1种,
∴出现(正,正)的概率为,
故选:D.
19.(2021•邵阳)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是 .
【解答】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,
∴它有6种路径,
∵获得食物的有2种路径,
∴它遇到食物的概率是:
=.
故答案为:.
一十五.利用频率估计概率(共1小题)
20.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )
A.6m2 B.7m2 C.8m2 D.9m2
【解答】解:假设不规则图案面积为xm2,
由已知得:长方形面积为20m2,
根据几何概率公式小球落在不规则图案的概率为:,
当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,
综上有:,解得x=7.
故选:B.
相关试卷
这是一份第4章+概率解答题【湘教版-中考真题】九年级数学下册期末复习培优练习(湖南),共33页。
这是一份第4章+概率选择、填空题【湘教版-中考真题】九年级数学下册期末复习培优练习(湖南),共17页。
这是一份第3章+投影与视图+选择题【湘教版-中考真题】九年级数学下册期末复习培优练习(湖南),共17页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)