![初中数学9上九月份 学月检测题含答案01](http://img-preview.51jiaoxi.com/2/3/13508273/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学9上九月份 学月检测题含答案02](http://img-preview.51jiaoxi.com/2/3/13508273/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学9上九月份 学月检测题含答案03](http://img-preview.51jiaoxi.com/2/3/13508273/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学9上九月份 学月检测题含答案
展开九年级上册九月份 学月检测题(1)
姓名:__________班级:__________考号:__________
一 、选择题(本大题共12小题,每小题4分,共48分)
1.下列方程中,一元二次方程共有( )个
①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;
⑤(x﹣1)2+y2=2; ⑥(x﹣1)(x﹣3)=x2.
A.1 B.2 C.3 D.4
2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )
A.y=(x﹣2)2+1 B.y=(x﹣2)2﹣1
C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3
3.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得( )
A.10(1+x)2=16.9 B.10(1+2x)=16.9
C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9
4.抛物线y=(x﹣3)2﹣1的顶点坐标是( )
A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)
5.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为( )
A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,2
6.抛物线y=﹣4x2+5的开口方向( )
A.向上 B.向下 C.向左 D.向右
7.在下列二次函数中,其图象对称轴为x=2的是( )
A.y=2x2﹣4 B.y=2(x﹣2)2 C.y=2x2+2 D.y=2(x+2)2
8.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是( )
A.m>1 B.m<1 C.m≥1 D.m≤1
9.方程x2+x﹣12=0的两个根为( )
A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3
10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是( )
11.给出一种运算:对于函数y=xn,规定y′=nxn﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是( )
A.x1=4,x2=﹣4 B.x1=2,x2=﹣2 C.x1=x2=0 D.x1=2,x2=﹣2
12.如图,平面直角坐标系中,已知点B(2,1),过点B作BA⊥x轴,垂足为A,若抛物线y=x2+k与△OAB的边界总有两个公共点,则实数k的取值范围是( )
A.﹣2<k<0 B.﹣2<k< C.﹣2<k<﹣1 D.﹣2<k<
二 、填空题(本大题共6小题,每小题4分,共24分)
13.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m= .
14.抛物线y=x2﹣4x+3的顶点坐标是______ .
15.关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是__________.
16.抛物线y=(a+2)x2+3x﹣a的开口向下,那么a的取值范围是_______________.
17.从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是
18.如图,是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,它与x轴的一个交点为A(3,0),根据图象,可知关于x的一元二次方程ax2+bx+c=0的解是______.
三 、解答题(本大题共8小题,19-20每题7分,21-24每题10分,24-25每题12分,共78分)
19.(1)解方程:x2﹣4x+3=0; (2)解不等式组.
20.已知抛物线y=﹣x2+bx+c的对称轴是直线x=﹣1,且经过点(2,﹣3),求这个二次函数的表达式.
21.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.
22.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?
(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
23.在直角墙角AOB(OA⊥OB,且OA.OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.
(1)求这地面矩形的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
24.已知关于x的一元二次方程x2﹣2x+k=0.
(1)若方程有实数根,求k的取值范围;
(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.
25.九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天) | 1 | 30 | 60 | 90 |
每天销售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.
26.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.
(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.
0.九年级上册九月份 学月检测题(1)答案解析
一 、选择题
1.【考点】一元二次方程的定义.
【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.
【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;
②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;
③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;
④﹣x2=0,符合一元二次方程的定义;
⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;
⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.
一元二次方程共有2个.
故选:B.
【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
2.【考点】二次函数的三种形式.
【分析】运用配方法把二次函数的一般式化为顶点式即可.
【解答】解:y=x2﹣4x+1
=x2﹣4x+4﹣3
=(x﹣2)2﹣3,
故选:D.
3.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.
【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,
根据题意,可列方程:10(1+x)2=16.9,
故选:A.
【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
4. 【考点】二次函数的性质.
【分析】根据二次函数的顶点式,可得顶点坐标.
【解答】解:由y=(x﹣3)2﹣1得顶点坐标是(3,﹣1),
故选:B.
5.【分析】根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.
【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,
解得:x2=﹣4,m=2,
则另一实数根及m的值分别为﹣4,2,
故选D
【点评】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.
6.【考点】二次函数的性质.
【分析】根据抛物线y=﹣4x2+5,可知二次项系数是﹣4,从而可以得到该函数的开口方向.
【解答】解:∵抛物线y=﹣4x2+5,﹣4<0,
∴该抛物线的开口向下,
故选B.
7.【考点】二次函数的性质.
【分析】根据二次函数的性质求出各个函数的对称轴,选出正确的选项.
【解答】解:A.y=2x2﹣4的对称轴为x=0,所以选项A错误;
B、y=2(x﹣2)2的对称轴为x=2,所以选项B正确;
C、y=2x2+2的对称轴为x=0,所以选项C错误;
D、y=2(x+2)2对称轴为x=﹣2,所以选项D错误;
故选B.
8.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.
【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,
∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,
解得m≥1,
故选C.
【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.
9.【考点】解一元二次方程-因式分解法.
【分析】将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.
【解答】解:x2+x﹣12=(x+4)(x﹣3)=0,
则x+4=0,或x﹣3=0,
解得:x1=﹣4,x2=3.
故选D.
10.【考点】二次函数的图象;一次函数的图象.
【分析】先由一次函数y=ax+b图象得到字母a、b的正负,再与二次函数y=ax2﹣b的图象相比较看是否一致.
【解答】解:A.由直线y=ax+b的图象经过第二、三、四象限可知:a<0,b<0,
二次函数y=ax2﹣b的图象开口向上,
∴a>0,A不正确;
B、由直线y=ax+b的图象经过第一、二、三象限可知:a>0,b>0,
二次函数y=ax2﹣b的图象开口向下,
∴a<0,B不正确;
C、由直线y=ax+b的图象经过第一、二、四象限可知:a<0,b>0,
二次函数y=ax2﹣b的图象开口向上,
∴a>0,C不正确;
D、由直线y=ax+b的图象经过第一、二、三象限可知:a>0,b>0,
二次函数y=ax2﹣b的图象开口向上,顶点在y轴负半轴,
∴a>0,b>0,D正确.
故选D.
11.【分析】首先根据新定义求出函数y=x3中的n,再与方程y′=12组成方程组得出:3x2=12,用直接开平方法解方程即可.
【解答】解:由函数y=x3得n=3,则y′=3x2,
∴3x2=12,
x2=4,
x=±2,
x1=2,x2=﹣2,
故选B.
【点评】本题考查了利用直接开平方法解一元二次方程,同时还以新定义的形式考查了学生的阅读理解能力;注意:①二次项系数要化为1,②根据平方根的意义开平方时,是两个解,且是互为相反数,不要丢解.
12.【考点】二次函数图象上点的坐标特征.
【分析】先根据抛物线解析式y=x2+k,求出抛物线与△AOB有一个公共点时的k值,然后根据抛物线的位置与开口方向判断k的取值范围即可.
【解答】解:①由B(2,1)可得,OB的解析式为y=x,
∵抛物线为y=x2+k,
∴当抛物线与OB有两个交点时,
一元二次方程x=x2+k中,判别式△>0,
即1﹣8k>0,
解得k<,
∴抛物线与△OAB有两个公共点时,k<;
②∵B(2,1),BA⊥x轴,
∴A(2,0),
当抛物线y=x2+k经过点A时,0=2+k,即k=﹣2,
∵抛物线开口向上,
∴抛物线与△OAB有两个公共点时,k>﹣2,
综上,若抛物线y=x2+k与△OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.
故选(B)
二 、填空题
13.【考点】一元二次方程的定义.
【分析】直接利用一元二次方程的定义得出|m|=1,m﹣1≠0,进而得出答案.
【解答】解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,
∴|m|=1,m﹣1≠0,
解得:m=﹣1.
故答案为:﹣1.
【点评】此题主要考查了一元二次方程的定义,正确把握未知数的次数与系数是解题关键.
14.【考点】二次函数的性质.
【分析】根据抛物线y=x2﹣4x+3,可以将此函数的解析式化为顶点式,从而可以得到它的顶点坐标,本题得以解决.
【解答】解:∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线y=x2﹣4x+3的顶点坐标是(2,﹣1),
故答案是:(2,﹣1).
15.【考点】根的判别式.
【分析】根据方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.
【解答】解:由题意知,△=4﹣4m≥0,
∴m≤1,
故答案为:m≤1.
【点评】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.
16.【考点】二次函数的性质;二次函数的定义.
【分析】根据抛物线y=(a+2)x2+3x﹣a的开口向下,可得a+2<0,从而可以得到a的取值范围.
【解答】解:∵抛物线y=(a+2)x2+3x﹣a的开口向下,
∴a+2<0,
得a<﹣2,
故答案为:a<﹣2.
17.考点: 一次函数图象与系数的关系;根的判别式..
分析: 确定使函数的图象经过第一、三象限的m的值,然后确定使方程有实数根的m值,找到同时满足两个条件的m的值即可.
解答: 解:∵函数y=(5﹣m2)x的图象经过第一、三象限,
∴5﹣m2>0,
解得:﹣<m<,
∵关于x的一元二次方程(m+1)x2+mx+1=0有实数根,
∴m2﹣4(m+1)≥0,
∴m≥2+2或m≤2﹣2,
∴使函数的图象经过第一、三象限,且使方程有实数根的m的值有为﹣2,
故答案为:﹣2.
点评: 本题考查了一次函数图象与系数的关系及根的判别式的知识,解题的关键是会解一元二次不等式,难度不大.
18.【考点】抛物线与x轴的交点.
【分析】根据抛物线与x轴的两个交点到对称轴的距离相等,设另一个交点为(x,0),可得=1,解得x的值,关于x的一元二次方程ax2+bx+c=0的解就是抛物线与x轴交点的横坐标.
【解答】解:设抛物线与x轴的另一个交点坐标为:(x,0),
∵抛物线与x轴的两个交点到对称轴的距离相等,
∴=1,
解得:x=﹣1,
∴抛物线与x轴的另一个交点坐标为:(﹣1,0),
∴关于x的一元二次方程ax2+bx+c=0的解是3或﹣1.
三 、解答题
19.【考点】解一元二次方程-因式分解法;解一元一次不等式组.
【专题】计算题;一次方程(组)及应用.
【分析】(1)方程利用因式分解法求出解即可;
(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【解答】解:(1)分解因式得:(x﹣1)(x﹣3)=0,
可得x﹣1=0或x﹣3=0,
解得:x1=1,x2=3;
(2),
由①得:x≥1,
由②得:x>2,
则不等式组的解集为x>2.
【点评】此题考查了解一元二次方程﹣因式分解法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
20.考点: 待定系数法求二次函数解析式.
分析: 由抛物线的一般形式可知:a=﹣1,由对称轴方程x=﹣,可得一个等式﹣①,然后将点(2,﹣3)代入y=﹣x2+bx+c即可得到等式﹣4+2b+c=﹣3②,然后将①②联立方程组解答即可.
解答: 解:根据题意,得:,
解得,
所求函数表达式为y=﹣x2﹣2x+5.
点评: 此题考查了用待定系数法求二次函数的解析式,解题的关键是:熟练掌握待定系数法及对称轴表达式x=﹣.
21.【考点】根与系数的关系.
【分析】由于x=是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.
【解答】解:设方程的另一根为t.
依题意得:3×()2+m﹣8=0,
解得m=10.
又t=﹣,
所以t=﹣4.
综上所述,另一个根是﹣4,m的值为10.
22.【考点】二次函数的应用.
【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.
(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.
(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.
【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.
(2)设每星期利润为W元,
W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.
∴x=55时,W最大值=6750.
∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.
(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,
当x=52时,销售300+30×8=540,
当x=58时,销售300+30×2=360,
∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
23.【考点】一元二次方程的应用.
【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;
(2)分别计算出每一规格的地板砖所需的费用,然后比较即可.
【解答】(1)设这地面矩形的长是xm,则依题意得:
x(20﹣x)=96,
解得x1=12,x2=8(舍去),
答:这地面矩形的长是12米;
(2)规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).
规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元).
因为8250<7680,
所以采用规格为1.00×1.00所需的费用较少.
24.【考点】根的判别式;一元二次方程的解.
【分析】(1)根据关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,得出4﹣4k≥0,即可求出k的取值范围;
(2)先求出k的值,再代入方程x2﹣2x+k=0,求出x的值,再把x的值的相反数代入(m﹣1)x2﹣3mx﹣7=0,即可求出m的值.
【解答】解:(1)∵关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,
∴△=b2﹣4ac=4﹣4k≥0,
解得:k≤1.
∴k的取值范围是k≤1;
(2)当k≤1时的最大整数值是1,
则关于x的方程x2﹣2x+k=0是x2﹣2x+1=0,
解得:x1=x2=1,
∵方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,
∴当x=1时,(m﹣1)﹣3m﹣7=0,
解得:m=﹣4.
答:m的值是﹣4.
【点评】此题主要考查一元二次方程根的判别式,解题的关键是根据方程有实数根,求出k的值;一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
25.【考点】二次函数的应用;一元一次不等式的应用.
【分析】(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;
(2)根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;
(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.
【解答】解:(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),
∵y=kx+b经过点(0,40)、(50,90),
∴,解得:,
∴售价y与时间x的函数关系式为y=x+40;
当50<x≤90时,y=90.
∴售价y与时间x的函数关系式为y=.
由书记可知每天的销售量p与时间x成一次函数关系,
设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),
∵p=mx+n过点(60,80)、(30,140),
∴,解得:,
∴p=﹣2x+200(0≤x≤90,且x为整数),
当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;
当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.
综上所示,每天的销售利润w与时间x的函数关系式是w=.
(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,
∵a=﹣2<0且0≤x≤50,
∴当x=45时,w取最大值,最大值为6050元.
当50<x≤90时,w=﹣120x+12000,
∵k=﹣120<0,w随x增大而减小,
∴当x=50时,w取最大值,最大值为6000元.
∵6050>6000,
∴当x=45时,w最大,最大值为6050元.
即销售第45天时,当天获得的销售利润最大,最大利润是6050元.
(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,
解得:30≤x≤50,
50﹣30+1=21(天);
当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,
解得:50<x≤53,
∵x为整数,
∴50<x≤53,
53﹣50=3(天).
综上可知:21+3=24(天),
故该商品在销售过程中,共有24天每天的销售利润不低于5600元.
26.【考点】二次函数综合题.
【分析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;
(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+SOCE关于m的函数解析式,根据二次函数的性质即可得出结论.
【解答】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.
①∵正方形OABC的边长为4,对角线相交于点P,
∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).
②设抛物线L的解析式为y=ax2+bx+c,
∵抛物线L经过O、P、A三点,
∴有,
解得:,
∴抛物线L的解析式为y=﹣+2x.
(2)∵点E是正方形内的抛物线上的动点,
∴设点E的坐标为(m,﹣+2m)(0<m<4),
∴S△OAE+SOCE=OA•yE+OC•xE=﹣m2+4m+2m=﹣(m﹣3)2+9,
∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.
人教版九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程课后练习题: 这是一份人教版九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程课后练习题,共3页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。
初中数学8上九月份学月检测题(2)含答案: 这是一份初中数学8上九月份学月检测题(2)含答案,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学8上九月份学月检测题(1)含答案: 这是一份初中数学8上九月份学月检测题(1)含答案,共18页。试卷主要包含了2km,则M,C两点间的距离为,【考点】三角形内角和定理,【考点】直角三角形斜边上的中线,【考点】角度的计算,考点,【考点】三角形的外角定义,【考点】三角形的稳定性,【考点】角平分线的性质.等内容,欢迎下载使用。