搜索
    上传资料 赚现金
    6.5数学建模案例(三):人数估计教学设计-下学期高一数学湘教版(2019)必修第二册
    立即下载
    加入资料篮
    6.5数学建模案例(三):人数估计教学设计-下学期高一数学湘教版(2019)必修第二册01
    6.5数学建模案例(三):人数估计教学设计-下学期高一数学湘教版(2019)必修第二册02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修 第二册6.5 数学建模案例(三):人数估计精品教学设计

    展开
    这是一份数学必修 第二册6.5 数学建模案例(三):人数估计精品教学设计,共5页。教案主要包含了课程标准,教学目标,教学重点,教学难点,教学过程,教学反思,板书设计等内容,欢迎下载使用。

             湘教版必修第二册《6.5数学建模案例(三):人数估计教学设计

    一、课程标准

    让学生理解利用“人数估计”数学建模案例,形成研究报告,展示研究成果提升学生数学建模的核心素养.

    二、教学目标:

    1. 了解人数估计的方法,能够选择恰当的统计模型解决实际问题

    2. 通过建立和求解统计模型,培养学生的数学建模、数据分析及数学运算素养

    3. 学生在模型求解及推广的过程中,感受不同假设条件下选取模型结果的差异性;同时感受数学在实际生活中的应用价值。

    三、教学重点:能够理解数学建模的意义与作用;能够运用数学语言,清晰、准确表达数学建模的过程与结果.

    四、教学难点:应用数学语言,表达数学建模过程中的问题以及解决问题的过程与结果,形成研究报告,展示研究成果.

    五、教学过程

    (一)创设情境,引入新课

       在日常生活或科学研究中,经常碰到只知道部分信息,却需要从已知的部公息出发去估计出全部信息的问题。例如,医疗科研机构调查某慢性病的患者人数,其地旅游局统计当年到该地旅游的总人数,等等。这时统计模型与方法就成为解决这类问题的重要工具。下面我们讨论一个较简单的实际问题,体会统计模型的思有与方法。

    设计意图:实际情景引入,激发学习兴趣.

    (二)自主学习,熟悉概念

    1.要求:学生阅读P258-260

    2.思考:

    (1)数学建模的流程有哪些?

    (2)问题背景下,为了使估计值尽量接近真值,建立了几种模型解决这个问题?

    3)什么是MSE

    (三)   检验自学,强化概念

    1.问题背景

    问题:某大学美术系平面设计专业的报考人数连创新高今年报名刚结束考生想知道报考人数。考生的考号是按0001,0002…的顺序从小到大依次排列,该考生随机了解了50个考生的考号,具体如下

    请你给出一种方法,根据这50个随机抽取的考号估计考生总数

    2. 问题解析

    1)模型建立与求解

    模型一:用样本最大值估计总体的最大值

    用给出数据的最大值(例如,986)来估计考生总数,由于≤N恒成立。

    因此,该方法在实际应用中很可能出现低估N的情况。

    模型二:用样本中位数估计总体中位数

    n为奇数时,样本的中位数为,而总体的中位数取,由于样本中位数可以近似看成总体中位数,因而有 ,故可取

    =2-1作为N的估计值;

    n为偶数时,样本的中位数为,从而有,取=-1作为N的估计值。

    为了避免这种方法得到的估计值偏小的问题,可以考虑用下面的方法对考生总数N进行调整:

    在本问题中, =50且>+-1,因此可用986来估计考生总数。

    一般情况下, 样本点越多,估计值会越合理。而上述方法的求解过程并没有利获得的全部样本信息,因此我们需要建立更为合理的数学模型。

    模型三:用样本的平均值估计总数的平均值

    假设随机抽取的50个数的平均值近似等于所有考号的平均值,以此来估计考生总数N。由于这50个数的算术平均值为24572÷50=491.44,它应该与接近。因此取=491.44×2≈983作为N的估计值。由于983小于样本的最大值986,因此可用986来估计考生总数。

    模型四:用分区间方法求解

    把这50个样本从小到大排列,利用它将N个数据分段,选取不同端点,则得到不同的估计值。

    分区间的一种方法是:利用50 个样本数据,将区间[1,N]分成51个小区间[1,),[, ), …,[,N]。这51个小区间长度均值为,而前50个区间的平均长度为,由于样本是随机抽取的,可以认为,所以N的估计值可取为=1006,

    上述分区间的方法忽略了可能取到N的情况,因此,我们也可以将区间[1,N]改为[1, N+1],即把[1,N+1]分成51个小区间[1,),[, ), …,[,N+1],取,所以N的估计值可取为=1005.

    设计意图:引导 学生进行数学建模将实际问题转化为数学问题. 帮助学生找到更合理的数学模型问题探讨两种分区的原因进一步理解数学建模的多样性。

    (2)模型的进一步讨论

    前面我们采用不同的方法对考生总数进行了估计,发现估计方法不同得到的考生总数也不同,存在一定的差异。而分区间方法由于划分小区间所采用的分段方式不同,也有可能得到不同的估计值。但这些结果都是在某种合理的假设前提下得到的,不能说哪种方法得到的估计值一定是错的。这也体现了统计方法的特点。

    按照不同的估计方法往往会得到不同的估计值,那么有没有评价估计方法优劣的标准呢?

    我们可以利用计算机模拟各种估计方法,然后通过计算估计值与真值之间的偏离程度来评价估计方法的优劣。具体实施步骤如下:

    步骤(1)设定N以及试验次数k的值;

    步骤(2)12.. NN个自然数中不放回地随机抽取50个数据,组成一个样本;

    步骤(3)将样本中的 50个数据按从小到大排列,即<<…<

    步骤(4)按照不同的估计方法分别得到不同的估计值;

    步骤(5)重复上述步骤(1)~(4)k次。

    模拟完后,对估计值偏离真值N的程度进行计算:

    设第m(1≤m≤k)次试验得到的估计值为k次模拟得到的估计值与真直N之间的近似程度用估计值与真值差的平方的平均值来衡量,即计算

    将其值记为MSE

    结论:当试验次数k足够大时,MSE的大小反映了采用不同估计方法得到的估计值偏离真值N的程度。具有较小MSE值的估计方法更为合理。

    设计意图:让学生发现估计方法不同,得到的考生总数也不同。存在一定的差异。那么,有没有评价估计方法优劣的标准呢?当试验次数k足够大时,具有较小MSE值的估计方法更合理。

    (四)课堂练习及检测

    P261   问题研究

    (五)归纳小结

    1.问题解析;

    2.模型建立与求解

    3.模型的进一步推广。

    (六)作业

    P261   问题研究

    六、教学反思(酌情写一些)

     

    七、板书设计

    课题:6.4 数学建模案例(三):人数估计

    1.问题解析;

    2.模型建立与求解

    3.模型的进一步推广。

    希沃课件投影区域

    模型建立与求解

    模型1

    模型2

    模型3

    模型4

     


     

    相关教案

    湘教版(2019)必修 第二册第6章 数学建模6.2 数学建模——从自然走向理性之路优秀教案: 这是一份湘教版(2019)必修 第二册第6章 数学建模6.2 数学建模——从自然走向理性之路优秀教案,共5页。教案主要包含了课程标准,教学目标,教学重点,教学难点,教学过程,教学反思,板书设计等内容,欢迎下载使用。

    湘教版(2019)必修 第二册第6章 数学建模6.2 数学建模——从自然走向理性之路优质教案设计: 这是一份湘教版(2019)必修 第二册第6章 数学建模6.2 数学建模——从自然走向理性之路优质教案设计,共7页。教案主要包含了课程标准,教学目标,教学重点,教学难点,教学过程,教学反思,板书设计等内容,欢迎下载使用。

    高中数学湘教版(2019)必修 第二册6.2 数学建模——从自然走向理性之路精品教案: 这是一份高中数学湘教版(2019)必修 第二册6.2 数学建模——从自然走向理性之路精品教案,共5页。教案主要包含了课程标准,教学目标,教学重点,教学难点,教学过程,教学反思,板书设计等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        6.5数学建模案例(三):人数估计教学设计-下学期高一数学湘教版(2019)必修第二册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map