四川省2022年各地区中考数学真题按题型分层分类汇编-09解答题(压轴题)
展开四川省2022年各地区中考数学真题按题型分层分类汇编-09解答题(压轴题)
一.二次函数综合题(共11小题)
1.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;
(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
2.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
3.(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).
(1)求此二次函数的表达式及图象顶点D的坐标;
(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;
(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.
4.(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.
(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;
(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;
(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.
5.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.
(1)求a,b满足的关系式及c的值;
(2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;
(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.
6.(2022•乐山)如图1,已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C,且tan∠OAC=2.
(1)求二次函数的解析式;
(2)如图2,过点C作CD∥x轴交二次函数图象于点D,P是二次函数图象上异于点D的一个动点,连结PB、PC,若S△PBC=S△BCD,求点P的坐标;
(3)如图3,若点P是二次函数图象上位于BC下方的一个动点,连结OP交BC于点Q.设点P的横坐标为t,试用含t的代数式表示的值,并求的最大值.
7.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.
(1)当k=2时,求A,B两点的坐标;
(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;
(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.
8.(2022•德阳)抛物线的解析式是y=﹣x2+4x+a.直线y=﹣x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,﹣3)关于x轴对称.
(1)如图①,求射线MF的解析式;
(2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;
(3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x轴上方的抛物线上有一动点P,设射线AP与直线y=﹣x+2交于点N.求的最大值.
9.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
(1)求a,c的值;
(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
10.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).
(1)求抛物线的解析式.
(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.
(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.
11.(2022•遂宁)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;
(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.
二.三角形综合题(共1小题)
12.(2022•达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:
【初步探究】
(1)如图2,当ED∥BC时,则α= ;
(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系: ;
【深入探究】
(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.
【拓展延伸】
(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE(m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.
三.四边形综合题(共2小题)
13.(2022•乐山)华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.
如图,在正方形ABCD中,CE⊥DF.求证:CE=DF.
证明:设CE与DF交于点O,
∵四边形ABCD是正方形,
∴∠B=∠DCF=90°,BC=CD.
∴∠BCE+∠DCE=90°,
∵CE⊥DF,
∴∠COD=90°.
∴∠CDF+∠DCE=90°.
∴∠CDF=∠BCE,
∴△CBE≌△DFC.
∴CE=DF.
某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.
【问题探究】
如图1,在正方形ABCD中,点E、F、G、H分别在线段AB、BC、CD、DA上,且EG⊥FH.试猜想的值,并证明你的猜想.
【知识迁移】
如图2,在矩形ABCD中,AB=m,BC=n,点E、F、G、H分别在线段AB、BC、CD、DA上,且EG⊥FH.则= .
【拓展应用】
如图3,在四边形ABCD中,∠DAB=90°,∠ABC=60°,AB=BC,点E、F分别在线段AB、AD上,且CE⊥BF.求的值.
14.(2022•南充)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.
(1)判断△ABP的形状,并说明理由.
(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.
(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.
四.几何变换综合题(共1小题)
15.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.
【尝试初探】
(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.
【深入探究】
(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.
【拓展延伸】
(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).
四川省2022年各地区中考数学真题按题型分层分类汇编-09解答题(压轴题)
参考答案与试题解析
一.二次函数综合题(共11小题)
1.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;
(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
【解答】解:(1)∵顶点D的横坐标为1,
∴抛物线的对称轴为直线x=1,
∵A(﹣1,0),
∴B(3,0),
∴设抛物线的解析式为:y=a(x+1)(x﹣3),
将C(0,3)代入抛物线的解析式,
则﹣3a=3,
解得a=﹣1,
∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.
(2)存在,P(0,﹣1),理由如下:
∵∠APB+∠ACB=180°,
∴∠CAP+∠CBP=180°,
∴点A,C,B,P四点共圆,如图所示,
由(1)知,OB=OC=3,
∴∠OCB=∠OBC=45°,
∴∠APC=∠ABC=45°,
∴△AOP是等腰直角三角形,
∴OP=OA=1,
∴P(0,﹣1).
(3)存在,理由如下:
由(1)知抛物线的解析式为:y=﹣x2+2x+3,
∴D(1,4),
由抛物线的对称性可知,E(2,3),
∵A(﹣1,0),
∴AD=2,DE=,AE=3.
∴AD2=DE2+AE2,
∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.
∵点M在直线l下方的抛物线上,
∴设M(t,﹣t2+2t+3),则t>2或t<0.
∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,
若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,
∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,
解得t=2(舍)或t=3或﹣3或(舍)或﹣,
∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).
综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).
2.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),
∴,
解得,
∴抛物线的解析式为y=x2+x﹣4;
(2)存在.
理由:如图1中,设D(t,t2+t﹣4),连接OD.
令y=0,则x2+x﹣4=0,
解得x=﹣4或2,
∴A(﹣4,0),C(2,0),
∵B(0,﹣4),
∴OA=OB=4,
∵S△ABD=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣(t+2)2+4,
∵﹣1<0,
∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);
(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);
∵OA=OB=4,∠AOB=90°,
∴∠OAB=∠OBA=45°,
当∠P1AB=90°时,△ANP1是等腰直角三角形,
∴AN=NP1=3,
∴P1(﹣1,3),
当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),
当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),
∴PJ=AB=2,
∴12+(n+2)2=(2)2,
解得n=﹣2或﹣﹣2,
∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),
综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).
3.(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).
(1)求此二次函数的表达式及图象顶点D的坐标;
(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;
(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.
【解答】解:(1)由题意设二次函数表达式为:y=a(x+1)•(x﹣3),
∴a•(﹣3)=﹣3,
∴a=1,
∴y=(x+1)•(x﹣3)=x2﹣2x﹣3=(x﹣1)2﹣4,
∴D(1,﹣4);
(2)存在点E,使△ACE是直角三角形,过程如下:
设点E(1,m),
∵A(﹣1,0),C(0,﹣3),
∴AC2=10,AE2=4+m2,CE2=1+(m+3)2,
当∠EAC=90°时,
AE2+AC2=CE2,
∴14+m2=1+(m+3)2,
∴m=,
∴E1(1,),
当∠ACE=90°时,
AC2+CE2=AE2,
∴11+(m+3)2=4+m2,
∴m=﹣,
∴E2(1,﹣),
当∠AEC=90°时,
AE2+CE2=AC2,
∴5+m2+(m+3)2=10,
∴m=﹣1或﹣2,
∴E3(1,﹣1),E4(1,﹣2),
综上所述:点E(1,)或(1,﹣)或(1,﹣1)或(1,﹣2);
(3)设AD的中点为I,
∵A(﹣1,0),D(1,﹣4),
∴AD==2,I(0,﹣2),
∴PA⊥PD,
∴∠ADP=90°,
∴点P在以AB的中点I为圆心,为半径的圆上,
∵BI==,
∴PB最小=﹣.
4.(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.
(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;
(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;
(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.
【解答】解:(1)∵抛物线y=ax2+bx+c经过A(3,0)、B(﹣1,0),C(0,3),
∴,
解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣(x﹣1)2+4,
∴顶点D的坐标为(1,4);
(2)设直线AC的解析式为y=kx+b,
把A(3,0),C(0,3)代入,得,
∴,
∴直线AC的解析式为y=﹣x+3,
过点F作FG⊥DE于点G,
∵以A,C,E,F为顶点的四边形是以AC为边的平行四边形,
∴AC=EF,AC∥EF,
∵OA∥FG,
∴∠OAC=∠GFE,
∴△OAC≌△GFE(AAS),
∴OA=FG=3,
设F(m,﹣m2+2m+3),则G(1,﹣m2+2m+3),
∴FG=|m﹣1|=3,
∴m=﹣2或m=4,
当m=﹣2时,﹣m2+2m+3=﹣5,
∴F1(﹣2,﹣5),
当m=4时,﹣m2+2m+3=﹣5,
∴F2(4,﹣5)
综上所述,满足条件点F的坐标为(﹣2,﹣5)或(4,﹣5);
(3)由题意,M(1,﹣1),F2(4,﹣5),F1(﹣2,﹣5)关于对称轴直线x=1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F1作F1N⊥F2M于点N,交对称轴于点P,连接PF2.则MH=4,HF2=3,MF2=5,
在Rt△MHF2中,sin∠HMF2===,则在Rt△MPN中,sin∠PMN==,
∴PN=PM,
∵PF1=PF2,
∴PF+PM=PF2+PN=F1N为最小值,
∵=×6×4=×5×F1N,
∴F1N=,
∴PF+PM的最小值为.
5.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.
(1)求a,b满足的关系式及c的值;
(2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;
(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.
【解答】解:(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,
∴B(0,﹣2),
当y=0时,﹣x﹣2=0,
∴x=﹣2,
∴A(﹣2,0),
将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,
,
∴2a﹣b=1,c=﹣2;
(2)如图1,当a=时,2×﹣b=1,
∴b=﹣,
∴抛物线的解析式为:y=x2﹣x﹣2=(x﹣1)2﹣,
∴抛物线的对称轴是:x=1,
由对称性可得C(4,0),
要使△ABP的周长最小,只需AP+BP最小即可,
如图1,连接BC交直线x=1于点P,
因为点A与点C关于直线x=1对称,由对称性可知:AP+BP=PC+BP=BC,
此时△ABP的周长最小,所以△ABP的周长为AB+BC,
Rt△AOB中,AB===2,
Rt△BOC中,BC===2,
∴△ABP周长的最小值为2+2;
(3)当a=1时,2×1﹣b=1,
∴b=1,
∴y=x2+x﹣2,
∴A(﹣2,0),B(0,﹣2),C(1,0),
∴OA=OB,
∴△AOB是等腰直角三角形,
∴∠OAB=45°,
如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,
设Q(m,m2+m﹣2),则E(m,﹣m﹣2),
∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,
∴QD=QE=﹣(m+1)2+,
当m=﹣1时,QD有最大值是,
当m=﹣1时,y=1﹣1﹣2=﹣2,
综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.
6.(2022•乐山)如图1,已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C,且tan∠OAC=2.
(1)求二次函数的解析式;
(2)如图2,过点C作CD∥x轴交二次函数图象于点D,P是二次函数图象上异于点D的一个动点,连结PB、PC,若S△PBC=S△BCD,求点P的坐标;
(3)如图3,若点P是二次函数图象上位于BC下方的一个动点,连结OP交BC于点Q.设点P的横坐标为t,试用含t的代数式表示的值,并求的最大值.
【解答】解:(1)∵A(﹣1,0),
∴OA=1,
∵∠AOC=90°,
∴tan∠OAC==2,
∴OC=2OA=2,
∴点C(0,﹣2),
设二次函数的解析式为:y=a(x+1)•(x﹣2),
∴a•1×(﹣2)=﹣2,
∴a=1,
∴y=(x+1)•(x﹣2)=x2﹣x﹣2;
(2)设点P(a,a2﹣a﹣2),
如图1,当点P在第三象限时,作PE∥AB交BC于E,
∵B(2,0),C(0,﹣2),
∴直线BC的解析式为:y=x﹣2,
∴当y=a2﹣a﹣2时,x=y+2=a2﹣a,
∴PE=a2﹣a﹣a=a2﹣2a,
∴S△PBC=PE•OC,
∵抛物线的对称轴为直线y=,CD∥x轴,C(0,﹣2),
∴点D(1,﹣2),
∴CD=1,
∴S△BCD=OC,
∴PE•OC=•OC,
∴a2﹣2a=1,
∴a1=1+(舍去),a2=1﹣,
当x=1﹣时,y=a2﹣a﹣2=a﹣1=﹣,
∴P(1﹣,﹣),
如图2,当点P在第一象限时,
作PE⊥x轴于E,交直线BC于F,
∴F(a,a﹣2)
∴PF=(a2﹣a﹣2)﹣(a﹣2)=a2﹣2a,
∴S△PBC=OB=CD•OC,
∴a2﹣2a=1,
∴a1=1+,a2=1﹣(舍去),
当a=1+时,y=a2﹣a﹣2=a2﹣2a+a﹣2=1+1+﹣2=,
∴P(1+,),
综上所述:P(1+,)或(1﹣,﹣);
(3)如图3,
作PN⊥AB于N,交BC于M,
∵P(t,t2﹣t﹣2),M(t,t﹣2),
∴PM=(t﹣2)﹣(t2﹣t﹣2)=﹣t2+2t,
∵PN∥OC,
∴△PQM∽△OQC,
∴==﹣+,
∴当t=1时,()最大=.
7.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.
(1)当k=2时,求A,B两点的坐标;
(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;
(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.
【解答】解:(1)当k=2时,直线为y=2x﹣3,
由得:或,
∴A(﹣3,﹣9),B(1,﹣1);
(2)当k>0时,如图:
∵△B'AB的面积与△OAB的面积相等,
∴OB'∥AB,
∴∠OB'B=∠B'BC,
∵B、B'关于y轴对称,
∴OB=OB',∠ODB=∠ODB'=90°,
∴∠OB'B=∠OBB',
∴∠OBB'=∠B'BC,
∵∠ODB=90°=∠CDB,BD=BD,
∴△BOD≌△BCD(ASA),
∴OD=CD,
在y=kx﹣3中,令x=0得y=﹣3,
∴C(0,﹣3),OC=3,
∴OD=OC=,D(0,﹣),
在y=﹣x2中,令y=﹣得﹣=﹣x2,
解得x=或x=﹣,
∴B(,﹣),
把B(,﹣)代入y=kx﹣3得:
﹣=k﹣3,
解得k=;
当k<0时,过B'作B'F∥AB交y轴于F,如图:
在y=kx﹣3中,令x=0得y=﹣3,
∴E(0,﹣3),OE=3,
∵△B'AB的面积与△OAB的面积相等,
∴OE=EF=3,
∵B、B'关于y轴对称,
∴FB=FB',∠FGB=∠FGB'=90°,
∴∠FB'B=∠FBB',
∵B'F∥AB,
∴∠EBB'=∠FB'B,
∴∠EBB'=∠FBB',
∵∠BGE=90°=∠BGF,BG=BG,
∴△BGF≌△BGE(ASA),
∴GE=GF=EF=,
∴OG=OE+GE=,G(0,﹣),
在y=﹣x2中,令y=﹣得﹣=﹣x2,
解得x=或x=﹣,
∴B(,﹣),
把B(,﹣)代入y=kx﹣3得:
﹣=k﹣3,
解得k=﹣,
综上所述,k的值为或﹣;
(3)直线AB'经过定点(0,3),理由如下:
由得:x2+kx﹣3=0,
设x2+kx﹣3=0二根为a,b,
∴a+b=﹣k,ab=﹣3,A(a,﹣a2),B(b,﹣b2),
∵B、B'关于y轴对称,
∴B'(﹣b,﹣b2),
设直线AB'解析式为y=mx+n,将A(a,﹣a2),B'(﹣b,﹣b2)代入得:
,
解得:,
∵a+b=﹣k,ab=﹣3,
∴m=﹣(a﹣b)=b﹣a==,n=﹣ab=﹣(﹣3)=3,
∴直线AB'解析式为y=•x+3,
令x=0得y=3,
∴直线AB'经过定点(0,3).
8.(2022•德阳)抛物线的解析式是y=﹣x2+4x+a.直线y=﹣x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,﹣3)关于x轴对称.
(1)如图①,求射线MF的解析式;
(2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;
(3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x轴上方的抛物线上有一动点P,设射线AP与直线y=﹣x+2交于点N.求的最大值.
【解答】解:(1)∵点F与直线上的点G(5,﹣3)关于x轴对称,
∴F(5,3),
∵直线y=﹣x+2与x轴交于点M,
∴M(2,0),
设直线MF的解析式为y=kx+b,
则有,
解得,
∴射线MF的解析式为y=x﹣2(x≥2);
(2)如图①中,设折线EMF与抛物线的交点为P,Q.
∵抛物线的对称轴x=﹣=2,点M(2,0),
∴点M值抛物线的对称轴上,
∵直线EM的解析式为y=﹣x+2,直线MF的解析式为y=x﹣2,
∴直线EM,直线MF关于直线x=2对称,
∴P,Q关于直线x=2对称,
∴2=,
∴x1+x2=4;
(3)如图②中,过点P作PT∥AB交直线ME于点T.
∵C(0,5),
∴抛物线的解析式为y=﹣x2+4x+5,
∴A(﹣1,0),B(5,0),
设P(t,﹣t2+4t+5),则T(t2﹣4t﹣3,﹣t2+4t+5),
∵PT∥AM,
∴==(t﹣(t2﹣4t﹣3)=﹣(t﹣)2+,
∵﹣<0,
∴有最大值,最大值为.
9.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
(1)求a,c的值;
(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:
解得:;
(2)由(1)知:抛物线解析式为:y=﹣x2+x+4,
设直线AB的解析式为:y=kx+b,
则,解得:,
∴AB的解析式为:y=2x+4,
设直线DE的解析式为:y=mx,
∴2x+4=mx,
∴x=,
当x=3时,y=3m,
∴E(3,3m),
∵△BDO与△OCE的面积相等,CE⊥OC,
∴•3•(﹣3m)=•4•,
∴9m2﹣18m﹣16=0,
∴(3m+2)(3m﹣8)=0,
∴m1=﹣,m2=(舍),
∴直线DE的解析式为:y=﹣x;
(3)存在,
B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:
设P(t,﹣t2+t+4),
①如图1,过点P作PH⊥y轴于H,
∵四边形BPGF是矩形,
∴BP=FG,∠PBF=∠BFG=90°,
∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,
∴∠PBH=∠OFB=∠CGF,
∵∠PHB=∠FCG=90°,
∴△PHB≌△FCG(AAS),
∴PH=CF,
∴CF=PH=t,OF=3﹣t,
∵∠PBH=∠OFB,
∴=,即=,
解得:t1=0(舍),t2=1,
∴F(2,0);
②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,
同①可得:NG=FM=3,OF=t﹣3,
∵∠OFB=∠FPM,
∴tan∠OFB=tan∠FPM,
∴=,即=,
解得:t1=,t2=(舍),
∴F(,0);
综上,点F的坐标为(2,0)或(,0).
10.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).
(1)求抛物线的解析式.
(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.
(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.
【解答】解:(1)由题意得,
,
∴,
∴y=﹣;
(2)如图1,
作直线l∥BC且与抛物线相切于点P1,直线l交y轴于E,作直线m∥BC且直线m到BC的距离等于直线l到BC的距离,
∵BC的解析式为y=x﹣4,
∴设直线l的解析式为:y=x+m,
由=x+m得,
x2﹣4x﹣3(m+4)=0,
∵Δ=0,
∴﹣3(m+4)=4,
∴m=﹣,
∴x2﹣4x+4=0,y=x﹣,
∴x=2,y=﹣,
∴P1(2,﹣),
∵E(0,﹣),C(0,﹣4),
∴F(0,﹣4×2﹣(﹣)),
即(0,﹣),
∴直线m的解析式为:y=x﹣,
∴,
∴,,
∴P2(2﹣2,﹣2﹣),P3(2+2,2﹣),
综上所述:点P(2,﹣)或(2﹣2,﹣2﹣)或(2+2,2﹣);
(3)如图2,
作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,
设D点的横坐标为a,
∵BN=DN,
∴BD=2BN,N点的横坐标为:,
∴OH=,
∵NH∥DF,
∴△BHN∽△BFD,
∴,
∴DF=2NH,
同理可得:△OMG∽△ONH,
∴=,
∴MG=2NH,OG=2OH=a+4,
∴KF=MG=DF,
∵tan∠DEB=2tan∠DBE
∴=2•,
∴EF=,
∵BF=4﹣a,
∴EF=,
∵EF∥MK,
∴△DEF∽△DMK,
∴=,
∴,
∴a=0,
∴OG=a+4=4,
∴G(﹣4,0),
当x=﹣4时,y=﹣﹣4=,
∴M(﹣4,).
11.(2022•遂宁)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;
(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.
【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣3).
∴,
∴,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)如图,设D1为D关于直线AB的对称点,D2为D关于直线BC的对称点,连接D1E,D2F,D1D2.
由对称性可知DE=D1E,DF=D2F,△DEF的周长=D1E+EF+D2F,
∴当D1,E.F.D2共线时,△DEF的周长最小,最小值为D1D2的长,
令y=0,则x2﹣2x﹣3=0,
解得x=﹣1或3,
∴B(3,0),
∴OB=OC=3,
∴△BOC是等腰直角三角形,
∵BC垂直平分DD2,且D(0,﹣2),
∴D2(1,﹣3),
∵D,D1关于x轴对称,
∴D1(0,2),
∴D1D2===,
∴△DEF的周长的最小值为.
(3)∵M到x轴距离为d,AB=4,连接BM.
∴S△ABM=2d,
又∵S△AMN=2d,
∴S△ABM=S△AMN,
∴B,N到AM的距离相等,
∵B,N在AM的同侧,
∴AM∥BN,
设直线BC的解析式为y=kx+m,
则有,
∴,
∴直线BC的解析式为y=x﹣3,
∴设直线AM的解析式为y=x+n,
∵A(﹣1,0),
∴直线AM的解析式为y=x+1,
由,解得或,
∴M(4,5),
∵点N在射线CB上,
∴设N(t,t﹣3),
过点M作x轴的平行线l,过点N作y轴的平行线交x轴于点P,交直线l于点Q.
∵A(﹣1,0),M(4,5),N(t,t﹣3),
∴AM=5,AN=,MN=,
∵△AMN是等腰三角形,
当AM=AN时,5=,
解得t=1±,
当AM=MN时,5=,
解得t=6±,
当AN=MN时,=,
解得t=,
∵N在第一象限,
∴t>3,
∴t的值为,1+,6+,
∴点N的坐标为(,)或(1+,﹣2+)或(6+,3+).
二.三角形综合题(共1小题)
12.(2022•达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:
【初步探究】
(1)如图2,当ED∥BC时,则α= 45° ;
(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系: BF=AF+CF ;
【深入探究】
(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.
【拓展延伸】
(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE(m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.
【解答】解:(1)∵△CED是等腰直角三角形,
∴∠CDE=45°,
∵ED∥BC,
∴∠BCD=∠CDE=45°,即α=45°,
故答案为:45°;
(2)BF=AF+CF,理由如下:
如图3,
∵△ABC和△CDE是等腰直角三角形,
∴∠DCE=∠ACB,AC=BC,CD=CE,DF=CF,
∴∠ACE=∠BCD,
∴△ACE≌△BCD(SAS),
∴AF=BD,
∵BF=DF+BD,
∴BF=AF+CF;
故答案为:BF=AF+CF;
(3)如图4,当点E,F不重合时,(2)中的结论仍然成立,理由如下:
由(2)知,△ACE≌△BCD(SAS),
∴∠CAF=∠CBD,
过点C作CG⊥CF交BF于点G,
∵∠ACF+∠ACG=90°,∠ACG+∠GCB=90°,
∴∠ACF=∠BCG,
∵∠CAF=∠CBG,BC=AC,
∴△BCG≌△ACF(ASA),
∴GC=FC,BG=AF,
∴△GCF为等腰直角三角形,
∴GF=CF,
∴BF=BG+GF=AF+CF;
(4)BF=mAF+•FC.理由如下:
由(2)知,∠ACE=∠BCD,
而BC=mAC,CD=mEC,
即==m,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
过点C作CG⊥CF交BF于点G,如图6所示:
由(3)知,∠BCG=∠ACF,
∴△BGC∽△AFC,
∴===m,
∴BG=mAF,GC=mFC,
在Rt△CGF中,GF===•CF,
∴BF=BG+GF=mAF+•FC.
三.四边形综合题(共2小题)
13.(2022•乐山)华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.
如图,在正方形ABCD中,CE⊥DF.求证:CE=DF.
证明:设CE与DF交于点O,
∵四边形ABCD是正方形,
∴∠B=∠DCF=90°,BC=CD.
∴∠BCE+∠DCE=90°,
∵CE⊥DF,
∴∠COD=90°.
∴∠CDF+∠DCE=90°.
∴∠CDF=∠BCE,
∴△CBE≌△DFC.
∴CE=DF.
某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.
【问题探究】
如图1,在正方形ABCD中,点E、F、G、H分别在线段AB、BC、CD、DA上,且EG⊥FH.试猜想的值,并证明你的猜想.
【知识迁移】
如图2,在矩形ABCD中,AB=m,BC=n,点E、F、G、H分别在线段AB、BC、CD、DA上,且EG⊥FH.则= .
【拓展应用】
如图3,在四边形ABCD中,∠DAB=90°,∠ABC=60°,AB=BC,点E、F分别在线段AB、AD上,且CE⊥BF.求的值.
【解答】解:(1)结论:=1.
理由:如图(1)中,过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,
∴AM=HF,AN=EG,
在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°,
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN,
在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN,
∴△ABM≌△ADN(ASA),
∴AM=AN,即EG=FH,
∴=1;
(2)如图(2)中,过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,
∴AM=HF,AN=EG,
在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN.
∴△ABM∽△ADN.
∴=,
∵AB=m,BC=AD=n,
∴=.
故答案为:;
(3)如图3中,过点C作CM⊥AB于点M.设CE交BF于点O.
∵CM⊥AB,
∴∠CME=90°,
∴∠1+∠2=90°,
∵CE⊥BF,
∴∠BOE=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
∴△CME∽△BAF,
∴=,
∵AB=BC,∠ABC=60°,
∴==sin60°=.
14.(2022•南充)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.
(1)判断△ABP的形状,并说明理由.
(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.
(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.
【解答】(1)解:△ABP是直角三角形,理由如下:
∵点O是AB的中点,
∴AO=OB=AB,
∵OP=AB,
∴OP=OA=OB,
∴∠OBP=∠OPB,∠OAP=∠APO,
∵∠OAP+∠APO+∠OBP+∠BPO=180°,
∴∠APO+∠BPO=90°,
∴∠APB=90°,
∴△ABP是直角三角形;
(2)证明:如图1,延长AM,BC交于点Q,
∵M是CD的中点,
∴DM=CM,
∵∠D=∠MCQ=90°,∠AMD=∠QMC,
∴△ADM≌△QCM(ASA),
∴AD=CQ=BC,
∵∠BPQ=90°,
∴PC=BQ=BC,
∴∠CPB=∠CBP,
∵∠OPB=∠OBP,
∴∠OBC=∠OPC=90°,
∴∠OPN=∠OPA+∠APN=90°,
∵∠OAP+∠PAN=90°,∠OAP=∠OPA,
∴∠APN=∠PAN,
∴PN=AN;
(3)解:分两种情况:
①如图2,点M在CD上时,过点P作GH∥CD,交AD于G,交BC于H,
设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,
∵PG∥DM,
∴△AGP∽△ADM,
∴=,即,
∴PG=x﹣ax,
∵∠CPQ=90°,
∴∠CPH+∠QPG=90°,
∵∠CPH+∠PCH=90°,
∴∠QPG=∠PCH,
∴tan∠QPG=tan∠PCH,即=,
∴PH•PG=QG•CH,
同理得:∠APG=∠PBH,
∴tan∠APG=tan∠PBH,即=,
∴PG•PH=AG•BH=AG2,
∴AG2=QG•CH,即(﹣a)2=a(+a),
∴a=,
∵PG•PH=AG2,
∴(x﹣x)•(5﹣x+x)=(﹣)2,
解得:x1=12(舍),x2=,
∴DM=;
②如图3,当M在DC的延长线上时,同理得:DM=12,
综上,DM的长是或12.
四.几何变换综合题(共1小题)
15.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.
【尝试初探】
(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.
【深入探究】
(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.
【拓展延伸】
(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).
【解答】解:(1)∵四边形EBFG和四边形ABCD是矩形,
∴∠A=∠BEG=∠D=90°,
∴∠ABE+∠AEB=∠AEB+∠DEH=90°,
∴∠DEH=∠ABE,
∴△ABE∽△DEH,
∴在点E的运动过程中,△ABE与△DEH始终保持相似关系;
(2)如图1,∵H是线段CD中点,
∴DH=CH,
设DH=x,AE=a,则AB=2x,AD=4x,DE=4x﹣a,
由(1)知:△ABE∽△DEH,
∴=,即=,
∴2x2=4ax﹣a2,
∴2x2﹣4ax+a2=0,
∴x==,
∵tan∠ABE==,
当x=时,tan∠ABE==,
当x=时,tan∠ABE==;
综上,tan∠ABE的值是.
(3)分两种情况:
①如图2,BH=FH,
设AB=x,AE=a,
∵四边形BEGF是矩形,
∴∠BEG=∠G=90°,BE=FG,
∴Rt△BEH≌Rt△FGH(HL),
∴EH=GH,
∵矩形EBFG∽矩形ABCD,
∴==n,
∴=n,
∴=,
由(1)知:△ABE∽△DEH,
∴==,
∴=,
∴nx=2a,
∴=,
∴tan∠ABE===;
②如图3,BF=FH,
∵矩形EBFG∽矩形ABCD,
∴∠ABC=∠EBF=90°,=,
∴∠ABE=∠CBF,
∴△ABE∽△CBF,
∴∠BCF=∠A=90°,
∴D,C,F共线,
∵BF=FH,
∴∠FBH=∠FHB,
∵EG∥BF,
∴∠FBH=∠EHB,
∴∠EHB=∠CHB,
∵BE⊥EH,BC⊥CH,
∴BE=BC,
由①可知:AB=x,AE=a,BE=BC=nx,
由勾股定理得:AB2+AE2=BE2,
∴x2+a2=(nx)2,
∴x=(负值舍),
∴tan∠ABE===,
综上,tan∠ABE的值是或.
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题,共55页。
湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题): 这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题),共34页。试卷主要包含了,他们称等内容,欢迎下载使用。
黑龙江省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题): 这是一份黑龙江省各地区2022年中考数学真题按题型分层分类汇编-09解答题(压轴题),共25页。试卷主要包含了之间的函数关系对应的图象,综合与实践等内容,欢迎下载使用。