|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析01
    2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析02
    2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析

    展开
    这是一份2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析,共24页。试卷主要包含了下列事件中,必然事件是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,点A所表示的数的绝对值是(  )

    A.3 B.﹣3 C. D.
    2.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是  

    A.55° B.60° C.65° D.70°
    3.菱形的两条对角线长分别是6cm和8cm,则它的面积是(  )
    A.6cm2 B.12cm2 C.24cm2 D.48cm2
    4.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

    A. B. C.- D.
    5.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )

    A.15° B.35° C.25° D.45°
    6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为(  )
    A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
    7.下列事件中,必然事件是(  )
    A.抛掷一枚硬币,正面朝上
    B.打开电视,正在播放广告
    C.体育课上,小刚跑完1000米所用时间为1分钟
    D.袋中只有4个球,且都是红球,任意摸出一球是红球
    8.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )

    A.2﹣ B.1 C. D.﹣l
    9.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是(  )

    A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
    10.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是(  )
    A.160元 B.180元 C.200元 D.220元
    11.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是(  )
    A. B. C. D.
    12.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是(  )
    A.5 B.﹣2 C.2 D.﹣1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.

    14.数据5,6,7,4,3的方差是 .
    15.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.

    16.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.

    17.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.
    18.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
    (1)A,B 两处粮仓原有存粮各多少吨?
    (2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
    (3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.

    20.(6分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.

    (1)用含的代数式表示;
    (2)连结交于点,若,求的长.
    21.(6分)如图,直线与双曲线相交于、两点.
    (1) ,点坐标为 .
    (2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标

    22.(8分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.

    23.(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
    求楼间距AB;
    若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,

    24.(10分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
    (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    25.(10分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
    (1)求抛物线的解析式;
    (2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.

    26.(12分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
    27.(12分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据负数的绝对值是其相反数解答即可.
    【详解】
    |-3|=3,
    故选A.
    【点睛】
    此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.
    2、C
    【解析】
    根据旋转的性质和三角形内角和解答即可.
    【详解】
    ∵将△ABC绕点C顺时针旋转90°得到△EDC.
    ∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
    ∴∠ACD=90°-20°=70°,
    ∵点A,D,E在同一条直线上,
    ∴∠ADC+∠EDC=180°,
    ∵∠EDC+∠E+∠DCE=180°,
    ∴∠ADC=∠E+20°,
    ∵∠ACE=90°,AC=CE
    ∴∠DAC+∠E=90°,∠E=∠DAC=45°
    在△ADC中,∠ADC+∠DAC+∠DCA=180°,
    即45°+70°+∠ADC=180°,
    解得:∠ADC=65°,
    故选C.
    【点睛】
    此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
    3、C
    【解析】
    已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
    【详解】
    根据对角线的长可以求得菱形的面积,
    根据S=ab=×6cm×8cm=14cm1.
    故选:C.
    【点睛】
    考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
    4、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    5、A
    【解析】
    根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.
    【详解】
    ∵AB=AC,
    ∴∠ABC=∠ACB=65°,
    ∴∠A=180°-∠ABC-∠ACB=50°,
    ∵DC//AB,
    ∴∠ACD=∠A=50°,
    又∵∠D=∠A=50°,
    ∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,
    故选A.
    【点睛】
    本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.
    6、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:将0.0000000076用科学计数法表示为.
    故选A.
    【点睛】
    本题考查了用科学计数法表示较小的数,一般形式为a×,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.
    7、D
    【解析】
    试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.
    故选D.
    点睛:事件分为确定事件和不确定事件.
    必然事件和不可能事件叫做确定事件.
    8、D
    【解析】
    ∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
    ∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
    ∴AD⊥BC,B′C′⊥AB,
    ∴AD=BC=1,AF=FC′=AC′=1,
    ∴DC′=AC′-AD=-1,
    ∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
    故选D.

    【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
    9、C
    【解析】
    根据平行线性质和全等三角形的判定定理逐个分析.
    【详解】
    由,得∠B=∠D,
    因为,
    若≌,则还需要补充的条件可以是:
    AB=DE,或∠E=∠A, ∠EFD=∠ACB,
    故选C
    【点睛】
    本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
    10、C
    【解析】
    利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.
    【详解】
    解:设原价为x元,根据题意可得:
    80%x=140+20,
    解得:x=1.
    所以该商品的原价为1元;
    故选:C.
    【点睛】
    此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.
    11、A
    【解析】
    首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    画树状图如下:

    由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
    ∴两次都摸到黄球的概率为,
    故选A.
    【点睛】
    此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
    12、A
    【解析】
    试题分析:原式=1-(-3)+=1+3+1=5,故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、41
    【解析】
    试题分析:如图,连接EF
    ∵△ADF与△DEF同底等高,
    ∴S△ADF=S△DEF,
    即S△ADF-S△DPF=S△DEF-S△DPF,
    即S△APD=S△EPF=16cm1,
    同理可得S△BQC=S△EFQ=15cm1,、
    ∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.

    考点:1、三角形面积,1、平行四边形
    14、1
    【解析】
    先求平均数,再根据方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]计算即可.
    【详解】
    解:∵=(5+6+7+4+3)÷5=5,
    ∴数据的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.
    故答案为:1.
    考点:方差.
    15、1
    【解析】
    试题解析:如图,

    ∵a∥b,∠3=40°,
    ∴∠4=∠3=40°.
    ∵∠1=∠2+∠4=110°,
    ∴∠2=110°-∠4=110°-40°=1°.
    故答案为:1.
    16、(6053,2).
    【解析】
    根据前四次的坐标变化总结规律,从而得解.
    【详解】
    第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…
    发现点P的位置4次一个循环,
    ∵2017÷4=504余1,
    P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,
    ∴P2017(6053,2),
    故答案为(6053,2).
    考点:坐标与图形变化﹣旋转;规律型:点的坐标.
    17、AC⊥BD
    【解析】
    根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.
    【详解】
    ∵四边形EFGH是矩形,
    ∴∠FEH=90°,
    又∵点E、F、分别是AD、AB、各边的中点,
    ∴EF是三角形ABD的中位线,
    ∴EF∥BD,
    ∴∠FEH=∠OMH=90°,
    又∵点E、H分别是AD、CD各边的中点,
    ∴EH是三角形ACD的中位线,
    ∴EH∥AC,
    ∴∠OMH=∠COB=90°,
    即AC⊥BD.

    故答案为:AC⊥BD.
    【点睛】
    此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.
    18、.
    【解析】
    如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
    【详解】
    如图,
    ∵四边形CDEF是正方形,
    ∴CD=ED,DE∥CF,
    设ED=x,则CD=x,AD=12-x,
    ∵DE∥CF,
    ∴∠ADE=∠C,∠AED=∠B,
    ∴△ADE∽△ACB,
    ∴=,
    ∴=,
    ∴x=,
    故答案为.

    【点睛】
    本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
    【解析】
    (1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
    (2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
    (3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
    【详解】
    (1)设A,B两处粮仓原有存粮x,y吨
    根据题意得:
    解得:x=270,y=1.
    答:A,B两处粮仓原有存粮分别是270,1吨.
    (2)A粮仓支援C粮仓的粮食是×270=162(吨),
    B粮仓支援C粮仓的粮食是×1=72(吨),
    A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
    ∵234>200,
    ∴此次调拨能满足C粮仓需求.
    (3)如图,

    根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
    在Rt△ABC中,sin∠BAC=,
    ∴BC=AB•sin∠BAC=1×0.44=79.2.
    ∵此车最多可行驶4×35=140(千米)<2×79.2,
    ∴小王途中须加油才能安全回到B地.
    【点睛】
    求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    20、(1);(2)
    【解析】
    (1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
    (2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.
    【详解】
    解:(1)如图示,连结,
    ∵是的切线,∴.
    又,∴,
    ∴,
    ∴.
    ∵,
    ∴.∴.
    ∵,
    ∴.
    ∴,即.

    (2)如图示,连结,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形是菱形,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴,
    ∵,
    ∴的长.
    【点睛】
    本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.
    21、 (1),;(1),.
    【解析】
    (1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
    【详解】
    解:(1)把点A(-1,a)代入一次函数y=x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(-1,3).
    把点A(-1,3)代入反比例函数y=,
    得:k=-3,
    ∴反比例函数的表达式y=-.
    联立两个函数关系式成方程组得:
    解得: 或
    ∴点B的坐标为(-3,1).
    故答案为3,(-3,1);
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.

    ∵点B、B′关于x轴对称,点B的坐标为(-3,1),
    ∴点B′的坐标为(-3,-1),PB=PB′,
    ∵点A、A′关于y轴对称,点A的坐标为(-1,3),
    ∴点A′的坐标为(1,3),QA=QA′,
    ∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
    设直线A′B′的解析式为y=mx+n,
    把A′,B′两点代入得:
    解得:
    ∴直线A′B′的解析式为y=x+1.
    令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
    令x=0,则y=1,点Q的坐标为(0,1).
    【点睛】
    本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.
    22、8+6.
    【解析】
    如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;
    【详解】
    解:如图作CH⊥AB于H.

    在Rt△BCH中,∵BC=12,∠B=30°,
    ∴CH=BC=6,BH==6,
    在Rt△ACH中,tanA==,
    ∴AH=8,
    ∴AC==10,
    【点睛】
    本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    23、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
    【解析】
    如图,作于M,于则,设想办法构建方程即可解决问题.
    求出AC,AD,分两种情形解决问题即可.
    【详解】
    解:如图,作于M,于则,设.
    在中,,
    在中,,



    的长为50m.

    由可知:,
    ,,
    ,,
    冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
    【点睛】
    考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    24、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2)
    【解析】
    解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).
    ∵抛物线y=-x2+bx+c经过A、B两点,
    ∴,解得.
    ∴抛物线解析式为y=-x2-2x+1.
    令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,
    ∴C(1,0).
    (2)如图1,
    设D(t,0).
    ∵OA=OB,∴∠BAO=15°.
    ∴E(t,t+1),P(t,-t2-2t+1).
    PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.
    ∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).
    (2)存在.如图2,过N点作NH⊥x轴于点H.
    设OH=m(m>0),∵OA=OB,∴∠BAO=15°.
    ∴NH=AH=1-m,∴yQ=1-m.
    又M为OA中点,∴MH=2-m.
    当△MON为等腰三角形时:
    ①若MN=ON,则H为底边OM的中点,
    ∴m=1,∴yQ=1-m=2.
    由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ②若MN=OM=2,则在Rt△MNH中,
    根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,
    化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).
    ∴yQ=2,由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ③若ON=OM=2,则在Rt△NOH中,
    根据勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,
    化简得m2-1m+6=0,∵△=-8<0,
    ∴此时不存在这样的直线l,使得△MON为等腰三角形.
    综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2).
    (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.
    (2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.
    (2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标. “△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.
    25、(1)y=﹣x2+2x+1;(2)当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
    【解析】
    (1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;
    (2)设点M的坐标为(1,m),则CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标.
    【详解】
    (1)将A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,
    得:,
    解得:,
    ∴抛物线的解析式为y=﹣x2+2x+1.
    (2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,
    设点M的坐标为(1,m),
    则CM=,AC==,AM=.
    分两种情况考虑:
    ①当∠ACM=90°时,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,
    解得:m=,
    ∴点M的坐标为(1,);
    ②当∠CAM=90°时,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,
    解得:m=﹣,
    ∴点M的坐标为(1,﹣).
    综上所述:当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
    【点睛】
    本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点.
    26、1
    【解析】
    根据实数的混合计算,先把各数化简再进行合并.
    【详解】
    原式=1+3-2-3+2
    =1
    【点睛】
    此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
    27、见解析
    【解析】
    根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
    【详解】
    解:∵CE∥DF
    ∴∠ECA=∠FDB,
    在△ECA和△FDB中

    ∴△ECA≌△FDB,
    ∴AE=FB.
    【点睛】
    本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.

    相关试卷

    浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省宁波市鄞州区七校2021-2022学年中考数学模拟预测题含解析,共18页。试卷主要包含了答题时请按要求用笔,某排球队名场上队员的身高等内容,欢迎下载使用。

    2022年上海奉贤华亭校中考数学模拟预测题含解析: 这是一份2022年上海奉贤华亭校中考数学模拟预测题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图所示,在平面直角坐标系中A,一、单选题,1﹣的相反数是,计算2a2+3a2的结果是等内容,欢迎下载使用。

    2022年浙江省江北区七校联考中考数学模拟预测题含解析: 这是一份2022年浙江省江北区七校联考中考数学模拟预测题含解析,共23页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map