搜索
    上传资料 赚现金
    英语朗读宝

    安徽庐江县2021-2022学年中考数学仿真试卷含解析

    安徽庐江县2021-2022学年中考数学仿真试卷含解析第1页
    安徽庐江县2021-2022学年中考数学仿真试卷含解析第2页
    安徽庐江县2021-2022学年中考数学仿真试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽庐江县2021-2022学年中考数学仿真试卷含解析

    展开

    这是一份安徽庐江县2021-2022学年中考数学仿真试卷含解析,共18页。试卷主要包含了如果将直线l1,计算的结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为(  )

    A.7 B.8 C.9 D.10
    2.计算(-18)÷9的值是( )
    A.-9 B.-27 C.-2 D.2
    3.方程x2﹣kx+1=0有两个相等的实数根,则k的值是(  )
    A.2 B.﹣2 C.±2 D.0
    4.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是(  )cm.

    A.7 B.11 C.13 D.16
    5.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )

    A. B. C. D.
    6.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )

    A.6 B.8 C.10 D.12
    7.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是(  )
    A.将l1向左平移2个单位 B.将l1向右平移2个单位
    C.将l1向上平移2个单位 D.将l1向下平移2个单位
    8.计算的结果是( )
    A.1 B.-1 C. D.
    9.若关于的一元二次方程有两个不相等的实数根,则一次函数
    的图象可能是:
    A. B. C. D.
    10.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    二、填空题(共7小题,每小题3分,满分21分)
    11.方程=1的解是_____.
    12.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
    13.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
    14.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.

    15.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.

    16.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
    17.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元
    三、解答题(共7小题,满分69分)
    18.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
    (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
    (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
    19.(5分)计算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷2
    20.(8分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).
    (1)求抛物线的解析式;
    (2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;
    (3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

    21.(10分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
    22.(10分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同. 
    (1)A,B两种型号的自行车的单价分别是多少? 
    (2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.
    23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
    ①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
    ②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
    24.(14分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (Ⅰ)△ABC的面积等于_____;
    (Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    根据三视图知,该几何体中小正方体的分布情况如下图所示:

    所以组成这个几何体的小正方体个数最多为9个,
    故选C.
    【点睛】
    考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
    2、C
    【解析】
    直接利用有理数的除法运算法则计算得出答案.
    【详解】
    解:(-18)÷9=-1.
    故选:C.
    【点睛】
    此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.
    3、C
    【解析】
    根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.
    【详解】
    ∵方程x2﹣kx+1=0有两个相等的实数根,
    ∴△=(﹣k)2﹣4×1×1=0,
    解得:k=±2,
    故选C.
    【点睛】
    本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.
    4、C
    【解析】
    直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.
    【详解】
    ∵将线段DC沿着CB的方向平移7cm得到线段EF,
    ∴EF=DC=4cm,FC=7cm,
    ∵AB=AC,BC=12cm,
    ∴∠B=∠C,BF=5cm,
    ∴∠B=∠BFE,
    ∴BE=EF=4cm,
    ∴△EBF的周长为:4+4+5=13(cm).
    故选C.
    【点睛】
    此题主要考查了平移的性质,根据题意得出BE的长是解题关键.
    5、C
    【解析】
    连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.
    【详解】
    解:如图,连接AE,

    ∵AB是直径,
    ∴∠AEB=90°,即AE⊥BC,
    ∵EB=EC,
    ∴AB=AC,
    ∴∠C=∠B,
    ∵∠BAC=50°,
    ∴∠C= (180°-50°)=65°,
    故选:C.
    【点睛】
    本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
    6、B
    【解析】
    分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.
    详解:如图,过点D作DE⊥AB于E,

    ∵AB=8,CD=2,
    ∵AD是∠BAC的角平分线,
    ∴DE=CD=2,
    ∴△ABD的面积
    故选B.
    点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.
    7、C
    【解析】
    根据“上加下减”的原则求解即可.
    【详解】
    将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
    故选:C.
    【点睛】
    本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
    8、C
    【解析】
    原式通分并利用同分母分式的减法法则计算,即可得到结果.
    【详解】
    解:==,
    故选:C.
    【点睛】
    此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
    9、B
    【解析】
    由方程有两个不相等的实数根,
    可得,
    解得,即异号,
    当时,一次函数的图象过一三四象限,
    当时,一次函数的图象过一二四象限,故答案选B.
    10、C
    【解析】
    先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
    【详解】
    a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
    故选C.
    【点睛】
    本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x=3
    【解析】
    去分母得:x﹣1=2,
    解得:x=3,
    经检验x=3是分式方程的解,
    故答案为3.
    【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.
    12、±1.
    【解析】
    根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.
    【详解】
    解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,
    ∴△=(1a)1-4×1×(-b1+1)=0,
    即a1+b1=1,
    ∵常数a与b互为倒数,
    ∴ab=1,
    ∴(a+b)1=a1+b1+1ab=1+3×1=4,
    ∴a+b=±1,
    故答案为±1.
    【点睛】
    本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.
    13、1.
    【解析】
    直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
    【详解】
    如图所示:
    ∵坡度i=1:0.75,
    ∴AC:BC=1:0.75=4:3,
    ∴设AC=4x,则BC=3x,
    ∴AB==5x,
    ∵AB=20m,
    ∴5x=20,
    解得:x=4,
    故3x=1,
    故这个物体在水平方向上前进了1m.
    故答案为:1.

    【点睛】
    此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
    14、120°
    【解析】
    根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.
    【详解】
    解:∵三种品牌的粽子总数为1200÷50%=2400个,
    又∵A、C品牌的粽子分别有400个、1200个,
    ∴B品牌的粽子有2400-400-1200=800个,
    则B品牌粽子在图2中所对应的圆心角的度数为360×.
    故答案为120°.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    15、1.
    【解析】
    连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
    【详解】
    连接BD,如图,

    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣50°=1°,
    ∴∠ACB=∠D=1°.
    故答案为1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
    16、3或1.2
    【解析】
    【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.
    【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,
    ∵△PBE∽△DBC,
    ∴∠PBE=∠DBC,∴点P在BD上,
    如图1,当DP=DA=8时,BP=2,
    ∵△PBE∽△DBC,
    ∴PE:CD=PB:DB=2:10,
    ∴PE:6=2:10,
    ∴PE=1.2;

    如图2,当AP=DP时,此时P为BD中点,
    ∵△PBE∽△DBC,
    ∴PE:CD=PB:DB=1:2,
    ∴PE:6=1:2,
    ∴PE=3;

    综上,PE的长为1.2或3,
    故答案为:1.2或3.
    【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.
    17、300
    【解析】
    设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.
    【详解】
    设成本为x元,标价为y元,依题意得,解得
    故定价为300元.
    【点睛】
    此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.

    三、解答题(共7小题,满分69分)
    18、 (1) ;(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
    【详解】
    (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
    (2)画树状图为:

    共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
    19、
    【解析】
    按照实数的运算顺序进行运算即可.
    【详解】
    解:原式


    【点睛】
    本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.
    20、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
    【解析】
    (1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
    (2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;
    (3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.
    【详解】
    解:(1)把代入,
    可以求得


    (2)过点作轴分别交线段和轴于点,
    在中,令,得

    设直线的解析式为
    可求得直线的解析式为:
    ∵S四边形ABCD


    当时,有最大值
    此时四边形ABCD面积有最大值
    (3)如图所示,

    如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
    ∵C(0,-3)
    ∴设P1(x,-3)
    ∴x2-x-3=-3,解得x1=0,x2=3,
    ∴P1(3,-3);
    ②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
    ∵C(0,-3)
    ∴设P(x,3),
    ∴x2-x-3=3,
    x2-3x-8=0
    解得x=或x=,
    此时存在点P2(,3)和P3(,3),
    综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).
    【点睛】
    此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.
    21、1.
    【解析】
    根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义.
    【详解】
    解:
    =
    =
    =
    =
    当x=2时,原式==1.
    【点睛】
    本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.
    22、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.
    【解析】
    分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题.
    (2)设购买A型自行车a辆,B型自行车的(600-a)辆.总费用为w元.构建一次函数,利用一次函数的性质即可解决问题.
    详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元, 
    由题意, 
    解得, 
    型自行车的单价为210元,B型自行车的单价为240元. 
    (2)设购买A型自行车a辆,B型自行车的辆.总费用为w元. 
    由题意, 

    随a的增大而减小, 


    ∴当时,w有最小值,最小值, 
    ∴最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.
    点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型.
    23、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
    【解析】
    【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
    (2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
    ②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
    【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
    根据题意可得,解得,
    答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
    (2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
    根据题意可得 ,解得75<m≤78,
    ∵m为整数,
    ∴m的值为76、77、78,
    ∴进货方案有3种,分别为:
    方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
    方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
    方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
    ②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
    ∵5>0,
    ∴W随m的增大而增大,且75<m≤78,
    ∴当m=78时,W最大,W最大值为1390,
    答:当m=78时,所获利润最大,最大利润为1390元.
    【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
    24、6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G
    【解析】
    (1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.
    【详解】
    解:(1)4×3÷2=6,故△ABC的面积等于6.
    (2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG即为所求正方形.

    故答案为:6,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G.
    【点睛】
    本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.

    相关试卷

    安徽省庐江县2021-2022学年中考数学模拟预测题含解析:

    这是一份安徽省庐江县2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了方程x2+2x﹣3=0的解是等内容,欢迎下载使用。

    安徽省庐江县联考2021-2022学年中考数学全真模拟试卷含解析:

    这是一份安徽省庐江县联考2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,有以下图形,sin45°的值等于,-5的倒数是等内容,欢迎下载使用。

    2021-2022学年安徽省合肥市庐江县志成学校中考数学模试卷含解析:

    这是一份2021-2022学年安徽省合肥市庐江县志成学校中考数学模试卷含解析,共18页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map