2022年浙江省台州市椒江区市级名校中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )
月用水量(吨)
4
5
6
9
户数(户)
3
4
2
1
A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨
2.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )
A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
3.如图所示的几何体的俯视图是( )
A. B. C. D.
4.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
5.如图,在▱ABCD中,AB=2,BC=1.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
6.如图,若AB∥CD,CD∥EF,那么∠BCE=( )
A.∠1+∠2 B.∠2-∠1
C.180°-∠1+∠2 D.180°-∠2+∠1
7.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为( )
A.34° B.56° C.66° D.146°
8.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是( )
A.40° B.65° C.70° D.80°
9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为( )
A.6 B.9 C.12 D.27
10.若正六边形的边长为6,则其外接圆半径为( )
A.3 B.3 C.3 D.6
11.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
12.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是( )
A. B.2 C. D.2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.
14.若关于的一元二次方程有实数根,则的取值范围是________.
15.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.
16.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
17.已知函数,当 时,函数值y随x的增大而增大.
18.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.
请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
20.(6分)一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.
(1)求点C的坐标;
(2)设二次函数图象的顶点为D.
①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;
②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.
21.(6分)已知,抛物线(为常数).
(1)抛物线的顶点坐标为( , )(用含的代数式表示);
(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .
22.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
23.(8分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?
24.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.
(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;
(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.
①求∠CAM的度数;
②当FH=,DM=4时,求DH的长.
25.(10分)计算:﹣﹣|4sin30°﹣|+(﹣)﹣1
26.(12分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
27.(12分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.
【详解】
解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;
B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;
C、极差为9﹣4=5(吨),错误,故选项正确;
D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.
故选:C.
【点睛】
此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.
2、B
【解析】
试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
试题解析:AC=2,
则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
则OC′=3,
故C′的坐标是(3,0).
故选B.
考点:坐标与图形变化-旋转.
3、B
【解析】
根据俯视图是从上往下看得到的图形解答即可.
【详解】
从上往下看得到的图形是:
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线
4、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
5、B
【解析】
分析:只要证明BE=BC即可解决问题;
详解:∵由题意可知CF是∠BCD的平分线,
∴∠BCE=∠DCE.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DCE=∠E,∠BCE=∠AEC,
∴BE=BC=1,
∵AB=2,
∴AE=BE-AB=1,
故选B.
点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
6、D
【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.
【详解】
解:∵AB∥CD,
∴∠BCD=∠1,
∵CD∥EF,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.
故选:D.
【点睛】
本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.
7、B
【解析】
分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.
详解:∵直线a∥b,∴∠2+∠BAD=180°.
∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.
故选B.
点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.
8、C
【解析】
根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
【详解】
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=40°,
∴∠BAD=140°,
∵AC平分∠DAB,
∴∠DAC=∠BAD=70°,
∵A∥BC,
∴∠C=∠DAC=70°,
故选C.
【点睛】
本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
9、D
【解析】
先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,AE:EB=1:2,
∴AE:CD=1:3,
∵AB∥CD,
∴∠EAF=∠DCF,
∵∠DFC=∠AFE,
∴△AEF∽△CDF,
∵S△AEF=3,
∴==()2,
解得S△FCD=1.
故选D.
【点睛】
本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
10、D
【解析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
【详解】
如图为正六边形的外接圆,ABCDEF是正六边形,
∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
故选D.
【点睛】
本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
11、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
12、A
【解析】
试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
在Rt△DHC中,DH==2,
∴EF=DH=.
故选A.
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x<﹣2或0<x<2
【解析】
仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.
【详解】
解:如图,
结合图象可得:
①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.
综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.
故答案为x<﹣2或0<x<2.
【点睛】
本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.
14、
【解析】
由题意可得,△=9-4m≥0,由此求得m的范围.
【详解】
∵关于x的一元二次方程x2-3x+m=0有实数根,
∴△=9-4m≥0,
求得 m≤.
故答案为:
【点睛】
本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.
15、
【解析】
利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
【详解】
∵AE=EC,BD=CD,
∴DE∥AB,DE=AB,
∴△EDC∽△ABC,
∴=,
故答案是:.
【点睛】
考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
16、0或-1。
【解析】由于没有交待是二次函数,故应分两种情况:
当k=0时,函数是一次函数,与x轴仅有一个公共点。
当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。
17、x≤﹣1.
【解析】
试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.
考点:二次函数的性质.
18、1.
【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.
点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)20;(2)40,1;(3).
【解析】
试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;
(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;
(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.
试题解析:解:(1)根据题意得:3÷15%=20(人),故答案为20;
(2)C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=1°;
故答案为40、1.
(3)列表如下:
所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生= =.
20、(1)点C(1,);(1)①y=x1-x; ②y=-x1+1x+.
【解析】
试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=x求得y=,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,
根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax1-4ax+c即可求得函数表达式.
试题解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函数图像的对称轴为直线x=1.
当x=1时,y=x=,∴C(1,).
(1)①∵点D与点C关于x轴对称,∴D(1,-),∴CD=3.
设A(m,m) (m<1),由S△ACD=3,得×3×(1-m)=3,解得m=0,∴A(0,0).
由A(0,0)、 D(1,-)得解得a=,c=0.
∴y=x1-x.
②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,
AC==(1-m),
∵CD=AC,∴CD=(1-m).
由S△ACD=10得×(1-m)1=10,解得m=-1或m=6(舍去),∴m=-1.
∴A(-1,-),CD=5.
若a>0,则点D在点C下方,∴D(1,-),
由A(-1,-)、D(1,-)得解得
∴y=x1-x-3.
若a<0,则点D在点C上方,∴D(1,),
由A(-1,-)、D(1,)得解得
∴y=-x1+1x+.
考点:二次函数与一次函数的综合题.
21、(1);(2)图象见解析,或;(3)
【解析】
(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
【详解】
解:(1),
抛物线的顶点的坐标为.
故答案为:
(2)将代入抛物线的解析式得:
解得:,
抛物线的解析式为.
抛物线的大致图象如图所示:
将代入得:
,
解得:或
抛物线与反比例函数图象的交点坐标为或.
将代入得:,
.
将代入得:,
.
综上所述,反比例函数的表达式为或.
(3)设点的坐标为,
则点的坐标为,
的坐标为.
的长随的增大而减小.
矩形在其对称轴的左侧,抛物线的对称轴为,
当时,的长有最小值,的最小值.
的长度不变,
当最小时,有最小值.
的最小值
故答案为:.
【点睛】
本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.
22、(1)证明见解析;(2)证明见解析;(3)4.
【解析】
试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.
点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
23、男生有12人,女生有21人.
【解析】
设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×=男生的人数 ,列出方程组,再进行求解即可.
【详解】
设该兴趣小组男生有x人,女生有y人,
依题意得:,
解得:.
答:该兴趣小组男生有12人,女生有21人.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.
24、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+.
【解析】
(1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;
(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出 ,可得,解方程即可;
【详解】
(1)证明:如图1中,
∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中线,且D与M重合,
∴BD=DC,
∴△ABD≌△EDC,
∴AB=ED,∵AB∥ED,
∴四边形ABDE是平行四边形.
(2)结论:成立.理由如下:
如图2中,过点M作MG∥DE交CE于G.
∵CE∥AM,
∴四边形DMGE是平行四边形,
∴ED=GM,且ED∥GM,
由(1)可知AB=GM,AB∥GM,
∴AB∥DE,AB=DE,
∴四边形ABDE是平行四边形.
(3)①如图3中,取线段HC的中点I,连接MI,
∵BM=MC,
∴MI是△BHC的中位线,
∴MI∥BH,MI=BH,
∵BH⊥AC,且BH=AM.
∴MI=AM,MI⊥AC,
∴∠CAM=30°.
②设DH=x,则AH=x,AD=2x,
∴AM=4+2x,
∴BH=4+2x,
∵四边形ABDE是平行四边形,
∴DF∥AB,
∴,
∴,
解得x=1+或1﹣(舍弃),
∴DH=1+.
【点睛】
本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.
25、﹣4﹣1.
【解析】
先逐项化简,再合并同类项或同类二次根式即可.
【详解】
解:原式=﹣3﹣(﹣2)﹣12
=﹣3﹣+2﹣12
=﹣4﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.
26、证明见解析.
【解析】
试题分析:由可得则可证明,因此可得
试题解析:即,在和中,
考点:三角形全等的判定.
27、(1)AB=2;相等;(2)a=±;(3), .
【解析】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
【详解】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
∴,(舍去),∴抛物线的“完美三角形”的斜边
②相等;
(2)∵抛物线与抛物线的形状相同,
∴抛物线与抛物线的“完美三角形”全等,
∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
∴B点坐标为(2,2)或(2,-2),∴.
(3)∵ 的最大值为-1,
∴ ,
∴ ,
∵抛物线的“完美三角形”斜边长为n,
∴抛物线的“完美三角形”斜边长为n,
∴B点坐标为,
∴代入抛物线,得,
∴ (不合题意舍去),
∴,
∴
2023年浙江省台州市椒江区中考数学一模试卷(含解析): 这是一份2023年浙江省台州市椒江区中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析: 这是一份浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析,共20页。试卷主要包含了下列运算,结果正确的是,不等式组的解在数轴上表示为,定义运算等内容,欢迎下载使用。
2022届浙江省台州市临海市市级名校中考数学全真模拟试题含解析: 这是一份2022届浙江省台州市临海市市级名校中考数学全真模拟试题含解析,共20页。试卷主要包含了答题时请按要求用笔,已知点 A等内容,欢迎下载使用。