![2022届浙江省台州市临海市市级名校中考数学全真模拟试题含解析01](http://img-preview.51jiaoxi.com/2/3/13325561/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届浙江省台州市临海市市级名校中考数学全真模拟试题含解析02](http://img-preview.51jiaoxi.com/2/3/13325561/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届浙江省台州市临海市市级名校中考数学全真模拟试题含解析03](http://img-preview.51jiaoxi.com/2/3/13325561/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届浙江省台州市临海市市级名校中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )
A.10π B.15π C.20π D.30π
2.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )
A.140° B.160° C.170° D.150°
3.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是( )
A. B. C. D.
4.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5.下列各数中,最小的数是( )
A.﹣4 B.3 C.0 D.﹣2
6.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )
A.+=18 B.=18
C.+=18 D.=18
7.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为( )
A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
8.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是( )
A. B.
C. D.
9.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2
10.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为__________.
12.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.
13.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.
14.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.
15.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.
16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.
三、解答题(共8题,共72分)
17.(8分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.
(问题引入)(1)如图1,若点P为AC的中点,求的值.
温馨提示:过点C作CE∥AO交BD于点E.
(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.
(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.
18.(8分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
19.(8分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
20.(8分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
21.(8分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
22.(10分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
求证:四边形ABCD是菱形;若AB=,BD=2,求OE的长.
23.(12分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
①求此抛物线的解析式;
②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
24.某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
∴圆锥的侧面积=lr=×6π×5=15π,故选B
2、B
【解析】
试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.
考点:角度的计算
3、B
【解析】
试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.
考点:由实际问题抽象出分式方程
4、A
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,也是中心对称图形,符合题意;
B、是轴对称图形,不是中心对称图形,不合题意;
C、不是轴对称图形,也不是中心对称图形,不合题意;
D、不是轴对称图形,不是中心对称图形,不合题意.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、A
【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
【详解】
根据有理数比较大小的方法,可得
﹣4<﹣2<0<3
∴各数中,最小的数是﹣4
故选:A
【点睛】
本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
6、B
【解析】
根据前后的时间和是18天,可以列出方程.
【详解】
若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.
故选B
【点睛】
本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.
7、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000637的小数点向右移动6位得到6.37
所以0.00000637用科学记数法表示为6.37×10﹣6,
故选B.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【解析】
根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
【详解】
设乙每天完成x个零件,则甲每天完成(x+8)个.
即得, ,故选B.
【点睛】
找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.
9、D
【解析】
试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;
故选D.
考点:反比例函数的性质.
10、B
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.
【详解】
解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;
B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.
故选:B.
【点睛】
本题重点考查三视图的定义以及考查学生的空间想象能力.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.
【详解】
∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,
∴BE=BC,DE=DC,
∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,
故答案是:
【点睛】
本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.
12、1.
【解析】
寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.
∴第10个图形有112-1=1个小五角星.
13、27π
【解析】
试题分析:设扇形的半径为r.则,解得r=9,∴扇形的面积==27π.故答案为27π.
考点:扇形面积的计算.
14、44°
【解析】
首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.
【详解】
连接OB,
∵BC是⊙O的切线,
∴OB⊥BC,
∴∠OBA+∠CBP=90°,
∵OC⊥OA,
∴∠A+∠APO=90°,
∵OA=OB,∠OAB=22°,
∴∠OAB=∠OBA=22°,
∴∠APO=∠CBP=68°,
∵∠APO=∠CPB,
∴∠CPB=∠ABP=68°,
∴∠OCB=180°-68°-68°=44°,
故答案为44°
【点睛】
此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
15、
【解析】
试题分析:解:设y=x+b,
∴3=2+b,解得:b=1.
∴函数解析式为:y=x+1.故答案为y=x+1.
考点:一次函数
点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.
16、-1
【解析】
试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.
考点:反比例外函数k的几何意义.
三、解答题(共8题,共72分)
17、(1);(2) 见解析;(3)
【解析】
(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.
【详解】
(1)如图1,过点C作CE∥OA交BD于点E,
∴△BCE∽△BOD,
∴=,
又BC=BO,∴CE=DO.
∵CE∥OA,∴∠ECP=∠DAP,
又∠EPC=∠DPA,PA=PC,
∴△ECP≌△DAP,
∴AD=CE=DO,
即 =;
(2)如图2,过点D作DF∥BO交AC于点F,
则 =, =.
∵点C为OB的中点,
∴BC=OC,
∴=;
(3)如图2,∵=,
由(2)可知==.
设AD=t,则BO=AO=4t,OD=3t,
∵AO⊥BO,即∠AOB=90°,
∴BD==5t,
∴PD=t,PB=4t,
∴PD=AD,
∴∠A=∠APD=∠BPC,
则tan∠BPC=tan∠A==.
【点睛】
本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.
18、 (1) k的值为3,m的值为1;(2)0
分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.
(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;
②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.
详解:(1)将A(3,m)代入y=x-2,
∴m=3-2=1,
∴A(3,1),
将A(3,1)代入y=,
∴k=3×1=3,
m的值为1.
(2)①当n=1时,P(1,1),
令y=1,代入y=x-2,
x-2=1,
∴x=3,
∴M(3,1),
∴PM=2,
令x=1代入y=,
∴y=3,
∴N(1,3),
∴PN=2
∴PM=PN,
②P(n,n),
点P在直线y=x上,
过点P作平行于x轴的直线,交直线y=x-2于点M,
M(n+2,n),
∴PM=2,
∵PN≥PM,
即PN≥2,
∴0<n≤1或n≥3
点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.
19、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.
【解析】
(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;
(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;
(3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.
【详解】
(1)∵点A是直线与抛物线的交点,且横坐标为-2,
,A点的坐标为(-2,1),
设直线的函数关系式为y=kx+b,
将(0,4),(-2,1)代入得
解得
∴y=x+4
∵直线与抛物线相交,
解得:x=-2或x=8,
当x=8时,y=16,
∴点B的坐标为(8,16);
(2)存在.
∵由A(-2,1),B(8,16)可求得AB2==325
.设点C(m,0),
同理可得AC2=(m+2)2+12=m2+4m+5,
BC2=(m-8)2+162=m2-16m+320,
①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;
②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;
③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,
∴点C的坐标为(-,0),(0,0),(6,0),(32,0)
(3)设M(a,a2),
则MN=,
又∵点P与点M纵坐标相同,
∴x+4=a2,
∴x= ,
∴点P的横坐标为,
∴MP=a-,
∴MN+3PM=a2+1+3(a-)=-a2+3a+9=- (a-6)2+1,
∵-2≤6≤8,
∴当a=6时,取最大值1,
∴当M的横坐标为6时,MN+3PM的长度的最大值是1
20、甲建筑物的高度约为,乙建筑物的高度约为.
【解析】
分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
详解:如图,过点作,垂足为.
则.
由题意可知,,,,,.
可得四边形为矩形.
∴,.
在中,,
∴.
在中,,
∴.
∴ .
∴.
答:甲建筑物的高度约为,乙建筑物的高度约为.
点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
21、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
22、(1)见解析;(1)OE=1.
【解析】
(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;
(1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.
【详解】
解:(1)∵AB∥CD,
∴∠OAB=∠DCA,
∵AC为∠DAB的平分线,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴▱ABCD是菱形;
(1)∵四边形ABCD是菱形,
∴OA=OC,BD⊥AC,∵CE⊥AB,
∴OE=OA=OC,
∵BD=1,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==1,
∴OE=OA=1.
【点睛】
此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键
23、(1)①;②n≤1;(2)ac≤1,见解析.
【解析】
(1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
【详解】
解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
△=(b+1)2=1,b=﹣1,
平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
∴4a﹣2b=1,
∴a=﹣,b=﹣1,
原抛物线:y=﹣x2+x,
②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
由得:x2+2n=1有解,所以n≤1.
(2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
其解析式为:y=ax2﹣bx+c过点(c,1),
∴ac2﹣bc+c=1 (c>1),
∴ac﹣b+1=1,b=ac+1,
且当x=1时,y=c,
对称轴:x=,抛物线开口向上,画草图如右所示.
由题知,当1<x<c时,y>1.
∴≥c,b≥2ac,
∴ac+1≥2ac,ac≤1;
【点睛】
本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
24、(1)A、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【解析】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;
(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题.
【详解】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:
解得:.
答:A种奖品的单价是10元、B种奖品的单价是15元.
(2)由题意可得:W=10m+15(100﹣m)=﹣5m+1.
∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m),解得:m≤75
∴当m=75时,W取得最小值,此时W=﹣5×75+1=2.
答:W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
威海市市级名校2022年中考数学全真模拟试题含解析: 这是一份威海市市级名校2022年中考数学全真模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,不等式3x<2等内容,欢迎下载使用。
2022年浙江省台州市椒江区市级名校中考数学模试卷含解析: 这是一份2022年浙江省台州市椒江区市级名校中考数学模试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年山东滨州阳信县市级名校中考数学全真模拟试题含解析: 这是一份2022年山东滨州阳信县市级名校中考数学全真模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列各数等内容,欢迎下载使用。