|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年上海市浦东区第四教育署达标名校中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022年上海市浦东区第四教育署达标名校中考冲刺卷数学试题含解析01
    2022年上海市浦东区第四教育署达标名校中考冲刺卷数学试题含解析02
    2022年上海市浦东区第四教育署达标名校中考冲刺卷数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年上海市浦东区第四教育署达标名校中考冲刺卷数学试题含解析

    展开
    这是一份2022年上海市浦东区第四教育署达标名校中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组 的整数解有,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(  )

    A.75° B.60° C.55° D.45°
    2.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )

    A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB与OC互相垂直 D.AB与OC互相平分
    3.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )

    A.40° B.60° C.80° D.100°
    4.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为(  )

    A.19° B.29° C.38° D.52°
    5.如图,,交于点,平分,交于. 若,则 的度数为( )
       
    A.35o B.45o C.55o D.65o
    6.不等式组 的整数解有(  )
    A.0个 B.5个 C.6个 D.无数个
    7.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )

    A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD
    8.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为(  )

    A.36 B.12 C.6 D.3
    9.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是(  )

    A.国 B.厉 C.害 D.了
    10.下列计算正确的是(  )
    A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
    二、填空题(共7小题,每小题3分,满分21分)
    11.如果a+b=2,那么代数式(a﹣)÷的值是______.
    12.化简;÷(﹣1)=______.
    13.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.

    14.在数轴上与表示的点距离最近的整数点所表示的数为_____.
    15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_____.

    16.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.
    17.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
    (1)求反比例函数的解析式.
    (2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.

    19.(5分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)

    20.(8分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
    ①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
    ②若BC=DE=4,当AE取最大值时,求AF的值.

    21.(10分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.

    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
    (1)通过取点、画图、测量,得到了x与y的几组值,如表:
    x/cm
    0
    1
    2
    3
    4
    5
    y/cm
    6.0
    4.8
    4.5

    6.0
    7.4
    (说明:补全表格时相关数值保留一位小数)
    (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
    (3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.
    22.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).
    (1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;
    (2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.
    23.(12分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
    若△CEF与△ABC相似.
    ①当AC=BC=2时,AD的长为   ;
    ②当AC=3,BC=4时,AD的长为   ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
    24.(14分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠BAD=90°,AB=AD,∠BAF=45°,
    ∵△ADE是等边三角形,
    ∴∠DAE=60°,AD=AE,
    ∴∠BAE=90°+60°=150°,AB=AE,
    ∴∠ABE=∠AEB=(180°﹣150°)=15°,
    ∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
    故选:B.
    【点睛】
    本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
    2、C
    【解析】
    (1)∵∠DAC=∠DBC=30°,
    ∴∠AOC=∠BOC=60°,
    又∵OA=OC=OB,
    ∴△AOC和△OBC都是等边三角形,
    ∴OA=AC=OC=BC=OB,
    ∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;
    (2)∵OA∥BC,OB∥AC,
    ∴四边形OACB是平行四边形,
    又∵OA=OB,
    ∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;
    (3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;
    (4)∵AB与OC互相平分,
    ∴四边形OACB是平行四边形,
    又∵OA=OB,
    ∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.
    故选C.
    3、D
    【解析】
    根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵l1∥l2,
    ∴∠3=∠1=60°,
    ∴∠2=∠A+∠3=40°+60°=100°.
    故选D.

    【点睛】
    本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
    4、C
    【解析】
    由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.
    【详解】
    ∵AO∥BC,
    ∴∠ACB=∠OAC,
    而∠OAC=19°,
    ∴∠ACB=19°,
    ∴∠AOB=2∠ACB=38°.
    故选:C.
    【点睛】
    本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.
    5、D
    【解析】
    分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE 的度数.
    详解:

    又∵EF平分∠BEC,
    .
    故选D.
    点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.
    6、B
    【解析】
    先解每一个不等式,求出不等式组的解集,再求整数解即可.
    【详解】
    解不等式x+3>0,得x>﹣3,
    解不等式﹣x≥﹣2,得x≤2,
    ∴不等式组的解集为﹣3<x≤2,
    ∴整数解有:﹣2,﹣1,0,1,2共5个,
    故选B.
    【点睛】
    本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.
    7、D
    【解析】
    根据垂径定理判断即可.
    【详解】
    连接DA.
    ∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
    ∵2∠DAB=∠BOD,∴∠CAD=∠BOD.

    故选D.
    【点睛】
    本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
    8、D
    【解析】
    设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论. 
    解:设△OAC和△BAD的直角边长分别为a、b, 
    则点B的坐标为(a+b,a﹣b).
    ∵点B在反比例函数的第一象限图象上, 
    ∴(a+b)×(a﹣b)=a2﹣b2=1. 
    ∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2. 
    故选D.
    点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.
    9、A
    【解析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    【详解】
    ∴有“我”字一面的相对面上的字是国.
    故答案选A.
    【点睛】
    本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.
    10、D
    【解析】
    各项中每项计算得到结果,即可作出判断.
    【详解】
    解:A.原式=8,错误;
    B.原式=2+4,错误;
    C.原式=1,错误;
    D.原式=x6y﹣3= ,正确.
    故选D.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    分析:根据分式的运算法则即可求出答案.
    详解:当a+b=2时,
    原式=
    =
    =a+b
    =2
    故答案为:2
    点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
    12、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    13、1
    【解析】
    根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴DC∥AB,
    ∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,
    ∴△NQC∽△MQA,
    同理得:△DPC∽△MPA,
    ∵P、Q为对角线AC的三等分点,
    ∴,,
    设CN=x,AM=1x,
    ∴,
    解得,x=1,
    ∴CN=1,
    故答案为1.
    【点睛】
    本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.
    14、3
    【解析】
    ≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,
    且0.683>0.317,∴距离整数点3最近.
    15、.
    【解析】
    由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而
    表示出梯形BOCA的面积关于k的等式,求解即可.
    【详解】
    如图,连接DC,

    ∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1.
    ∴△ADC的面积为4.
    ∵点A在双曲线y=的第一象限的那一支上,
    ∴设A点坐标为 (x,).
    ∵OC=2AB,∴OC=2x.
    ∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.
    ∴梯形BOCA的面积=,解得.
    【点睛】
    反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.
    16、1
    【解析】
    【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.
    【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,
    ∴x1+x2=2k,x1•x2=k2﹣k,
    ∵x12+x22=1,
    ∴(x1+x2)2-2x1x2=1,
    (2k)2﹣2(k2﹣k)=1,
    2k2+2k﹣1=0,
    k2+k﹣2=0,
    k=﹣2或1,
    ∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,
    k≥0,
    ∴k=1,
    ∴x1•x2=k2﹣k=0,
    ∴x12﹣x1x2+x22=1﹣0=1,
    故答案为:1.
    【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.
    17、1.73×1.
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将17.3万用科学记数法表示为1.73×1.
    故答案为1.73×1.
    【点睛】
    本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.

    三、解答题(共7小题,满分69分)
    18、(1);(2)P(0,6)
    【解析】
    试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC 试题解析:
    令一次函数中,则,
    解得:,即点A的坐标为(-4,2).
    ∵点A(-4,2)在反比例函数的图象上,
    ∴k=-4×2=-8,
    ∴反比例函数的表达式为.
    连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC 设平移后直线于x轴交于点F,则F(6,0)
    设平移后的直线解析式为,
    将F(6,0)代入得:b=3
    ∴直线CF解析式:
    令3=,解得:,
    ∴C(-2,4)
    ∵A、C两点坐标分别为A(-4,2)、C(-2,4)
    ∴直线AC的表达式为,
    此时,P点坐标为P(0,6).
    点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.
    19、30.3米.
    【解析】
    试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.
    试题解析:过点D作DE⊥AB于点E,
    在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,
    ∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1
    在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,
    ∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2
    ∴AB=AE+BE≈23.1+7.2=30.3米.

    20、(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=.
    【解析】
    (1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
    (2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
    ②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
    【详解】
    (1)BG=AE.
    理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
    ∴AD⊥BC,BD=CD,
    ∴∠ADB=∠ADC=90°.
    ∵四边形DEFG是正方形,
    ∴DE=DG.
    在△BDG和△ADE中,
    BD=AD,∠BDG=∠ADE,GD=ED,
    ∴△ADE≌△BDG(SAS),
    ∴BG=AE.
    故答案为BG=AE;
    (2)①成立BG=AE.
    理由:如图2,连接AD,

    ∵在Rt△BAC中,D为斜边BC中点,
    ∴AD=BD,AD⊥BC,
    ∴∠ADG+∠GDB=90°.         
    ∵四边形EFGD为正方形,
    ∴DE=DG,且∠GDE=90°,
    ∴∠ADG+∠ADE=90°,
    ∴∠BDG=∠ADE.
    在△BDG和△ADE中,
    BD=AD,∠BDG=∠ADE,GD=ED,
    ∴△BDG≌△ADE(SAS),
    ∴BG=AE;                           
    ②∵BG=AE,
    ∴当BG取得最大值时,AE取得最大值.
    如图3,当旋转角为270°时,BG=AE.
    ∵BC=DE=4,
    ∴BG=2+4=6.
    ∴AE=6.
    在Rt△AEF中,由勾股定理,得
    AF= =,
    ∴AF=2 .

    【点睛】
    本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.
    21、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2
    【解析】
    (1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;
    (2)可在网格图中直接画出函数图象;
    (3)由函数图象可知函数的最小值.
    【详解】
    (1)当点P运动到点H时,AH=3,作HN⊥AB于点N.
    ∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.

    故答案为:2.1;
    (2)

    (3)根据函数图象可知,当x=2时,函数有最小值y=4.2.
    故答案为:4.2.
    【点睛】
    本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    22、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.
    【解析】
    (1)画出树状图即可解题,(2)画出树状图即可解题.
    【详解】
    (1)画树状图如下:

    由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,
    ∴P(两个小孩都是女孩)=.
    (2)画树状图如下:

    由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,
    ∴P(三个小孩中恰好是2女1男)=.
    【点睛】
    本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.
    23、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
    【解析】
    (1)①当AC=BC=2时,△ABC为等腰直角三角形;
    ②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
    (2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
    【详解】
    (1)若△CEF与△ABC相似.
    ①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,

    此时D为AB边中点,AD=AC=.
    ②当AC=3,BC=4时,有两种情况:
    (I)若CE:CF=3:4,如答图2所示,

    ∵CE:CF=AC:BC,∴EF∥BC.
    由折叠性质可知,CD⊥EF,
    ∴CD⊥AB,即此时CD为AB边上的高.
    在Rt△ABC中,AC=3,BC=4,∴BC=1.
    ∴cosA=.∴AD=AC•cosA=3×=.
    (II)若CF:CE=3:4,如答图3所示.
    ∵△CEF∽△CAB,∴∠CEF=∠B.
    由折叠性质可知,∠CEF+∠ECD=90°.
    又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
    同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
    ∴此时AD=AB=×1=.
    综上所述,当AC=3,BC=4时,AD的长为或.
    (2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
    如图所示,连接CD,与EF交于点Q.
    ∵CD是Rt△ABC的中线
    ∴CD=DB=AB,
    ∴∠DCB=∠B.
    由折叠性质可知,∠CQF=∠DQF=90°,
    ∴∠DCB+∠CFE=90°,
    ∵∠B+∠A=90°,
    ∴∠CFE=∠A,
    又∵∠ACB=∠ACB,
    ∴△CEF∽△CBA.
    24、证明见解析.
    【解析】
    试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
    试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
    考点:1.全等三角形的判定与性质;2.平行四边形的性质.

    相关试卷

    上海市浦东区第四教育署2021-2022学年中考数学猜题卷含解析: 这是一份上海市浦东区第四教育署2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了下列运算中正确的是,下列命题中错误的有个,﹣18的倒数是等内容,欢迎下载使用。

    上海市浦东新区第四教育署重点名校2022年中考适应性考试数学试题含解析: 这是一份上海市浦东新区第四教育署重点名校2022年中考适应性考试数学试题含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,下面计算中,正确的是,的绝对值是,下列实数中是无理数的是等内容,欢迎下载使用。

    2022年上海市浦东新区第一教育署市级名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年上海市浦东新区第一教育署市级名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图,在中,,,,则等于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map