2022年陕西省西安市碑林区达标名校中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列4个数:,,π,()0,其中无理数是( )
A. B. C.π D.()0
2.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
A. B. C. D.
3.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
4.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
5.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )
A.① B.③ C.②或④ D.①或③
6.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A.2π B.4π C.5π D.6π
7.将(x+3)2﹣(x﹣1)2分解因式的结果是( )
A.4(2x+2) B.8x+8 C.8(x+1) D. 4(x+1)
8.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是( )
A. B. C. D.
9.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( )
年龄
13
14
15
25
28
30
35
其他
人数
30
533
17
12
20
9
2
3
A.平均数 B.众数 C.方差 D.标准差
10.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.32
二、填空题(共7小题,每小题3分,满分21分)
11.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.
12.因式分解:-3x2+3x=________.
13.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.
14.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.
15.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.
16.分式有意义时,x的取值范围是_____.
17.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.
三、解答题(共7小题,满分69分)
18.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
19.(5分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
(1)样本中D级的学生人数占全班学生人数的百分比是 ;
(2)扇形统计图中A级所在的扇形的圆心角度数是 ;
(3)请把条形统计图补充完整;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
20.(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)
21.(10分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.
求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.
22.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
23.(12分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.
(2)先化简,再求值:()÷,其中x=﹣1.
24.(14分)如图,在△ABC中,
(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).
(2)在(1)条件下,求证:AB2=BD•BC.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
=3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.
2、A
【解析】
根据菱形的判定方法一一判定即可
【详解】
作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
故选A
【点睛】
本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
3、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
4、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
5、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;
②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.
故答案为①或③.
故选D.
【点睛】
本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
6、B
【解析】
连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.
【详解】
连接OA、OC,
∵∠ADC=60°,
∴∠AOC=2∠ADC=120°,
则劣弧AC的长为: =4π.
故选B.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 .
7、C
【解析】
直接利用平方差公式分解因式即可.
【详解】
(x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).
故选C.
【点睛】
此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
8、B
【解析】
首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.
【详解】
∵四边形ABCD为正方形,
∴BA=AD,∠BAD=90°,
∵DE⊥AM于点E,BF⊥AM于点F,
∴∠AFB=90°,∠DEA=90°,
∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
∴∠ABF=∠EAD,
在△ABF和△DEA中
∴△ABF≌△DEA(AAS),
∴BF=AE;
设AE=x,则BF=x,DE=AF=1,
∵四边形ABED的面积为6,
∴,解得x1=3,x2=﹣4(舍去),
∴EF=x﹣1=2,
在Rt△BEF中,,
∴.
故选B.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
9、B
【解析】
分析:根据平均数的意义,众数的意义,方差的意义进行选择.
详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.
故选B.
点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
10、A
【解析】
∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,AD//BC,
∴△BEF∽△CDF,△BEF∽△AED,
∴ ,
∵BE:AB=2:3,AE=AB+BE,
∴BE:CD=2:3,BE:AE=2:5,
∴ ,
∵S△BEF=4,
∴S△CDF=9,S△AED=25,
∴S四边形ABFD=S△AED-S△BEF=25-4=21,
∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
故选A.
【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
分析:直接利用中心对称图形的性质结合概率求法直接得出答案.
详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
故答案为.
点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.
12、-3x(x-1)
【解析】
原式提取公因式即可得到结果.
【详解】
解:原式=-3x(x-1),
故答案为-3x(x-1)
【点睛】
此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.
13、12
【解析】
由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.
【详解】
解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.
【点睛】
此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.
14、1:3
【解析】
根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.
故答案为1:3.
15、8π
【解析】
试题分析:∵弧的半径为24,所对圆心角为60°,
∴弧长为l==8π.
故答案为8π.
【考点】弧长的计算.
16、x<1
【解析】
要使代数式有意义时,必有1﹣x>2,可解得x的范围.
【详解】
根据题意得:1﹣x>2,
解得:x<1.
故答案为x<1.
【点睛】
考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.
17、
【解析】
列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.
【详解】
解:列表得:
两个骰子向上的一面的点数和小于6的有10种,
则其和小于6的概率是,
故答案为:.
【点睛】
本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.
三、解答题(共7小题,满分69分)
18、(1)120件;(2)150元.
【解析】
试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
由题意可得:,解得,经检验是原方程的根.
(2)设每件衬衫的标价至少是元.
由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
由题意可得:
解得:,所以,,即每件衬衫的标价至少是150元.
考点:1、分式方程的应用 2、一元一次不等式的应用.
19、(1)10%; (2)72; (3)5,见解析; (4)330.
【解析】
解:(1)根据题意得:
D级的学生人数占全班人数的百分比是:
1-20%-46%-24%=10%;
(2)A级所在的扇形的圆心角度数是:20%×360°=72°;
(3)∵A等人数为10人,所占比例为20%,
∴抽查的学生数=10÷20%=50(人),
∴D级的学生人数是50×10%=5(人),
补图如下:
(4)根据题意得:
体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),
答:体育测试中A级和B级的学生人数之和是330名.
【点睛】
本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.
20、()cm.
【解析】
作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.
【详解】
如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,
在中,∠BCD=60°,BC=60cm,
∴,
在中,∠BAF=45°,AB=60cm,
∴,
∴D到L的距离.
【点睛】
本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.
21、(1)y=﹣x2+2x+3;(2)DE+DF有最大值为;(3)①存在,P的坐标为(,)或(,);②<t<.
【解析】
(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答
(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答
(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答
②观察函数图象与△ACQ为锐角三角形时的情况,即可解答
【详解】
解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,
∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),
∵DF∥AC,
∴∠DFG=∠ACO,易知抛物线对称轴为x=1,
∴DG=x-1,DF=(x-1),
∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,
∴当x=,DE+DF有最大值为;
答图1 答图2
(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,
∴直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(﹣1,0)代入得n=,
∴直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);
②<t<.
【点睛】
此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.
22、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
【解析】
(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
【详解】
(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
∴抛物线的解析式为y=﹣x2+2x+3;
把C(0,3)代入y=﹣x+n,解得n=3,
∴直线CD的解析式为y=﹣x+3,
解方程组,解得
或,
∴D点坐标为(,);
(2)存在.
设P(m,﹣m2+2m+3),则E(m,﹣m+3),
∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
当m=时,△CDP的面积存在最大值,最大值为;
(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
综上所述,m的值为或或.
【点睛】
本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
23、(1) (2)
【解析】
(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
解:(1)原式=﹣+1+2=﹣+1+=﹣;
(2)原式=
=
=
=,
当x=﹣1时,原式==.
【点睛】
本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
24、(1)作图见解析;(2)证明见解析;
【解析】
(1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.
【详解】
(1)如图,∠BAD为所作;
(2)∵∠BAD=∠C,∠B=∠B
∴△ABD∽△CBA,
∴AB:BC=BD:AB,
∴AB2=BD•BC.
【点睛】
本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.
2022届陕西省西安市五校中考数学最后冲刺模拟试卷含解析: 这是一份2022届陕西省西安市五校中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了下列运算正确的是,4的平方根是等内容,欢迎下载使用。
2022届陕西省宝鸡市凤翔县达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022届陕西省宝鸡市凤翔县达标名校中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了一、单选题等内容,欢迎下载使用。
2021-2022学年陕西省西安交通大附中重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年陕西省西安交通大附中重点达标名校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图,与∠1是内错角的是等内容,欢迎下载使用。