年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年梧州市重点中学中考三模数学试题含解析

    立即下载
    加入资料篮
    2022年梧州市重点中学中考三模数学试题含解析第1页
    2022年梧州市重点中学中考三模数学试题含解析第2页
    2022年梧州市重点中学中考三模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年梧州市重点中学中考三模数学试题含解析

    展开

    这是一份2022年梧州市重点中学中考三模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,初三,下列各式中计算正确的是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是(   )
    A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
    2.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )

    A.2 B.3 C.5 D.6
    3.下列图形中,是轴对称图形但不是中心对称图形的是(  )
    A.直角梯形 B.平行四边形 C.矩形 D.正五边形
    4.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN= y°, 则点(x,y)一定在( )
    A.抛物线上 B.过原点的直线上 C.双曲线上 D.以上说法都不对
    5.已知3a﹣2b=1,则代数式5﹣6a+4b的值是(  )
    A.4 B.3 C.﹣1 D.﹣3
    6.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是(  )

    A.(6,3) B.(6,4) C.(7,4) D.(8,4)
    7.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为  

    A.6 B.8 C.10 D.12
    8.下列各式中计算正确的是(  )
    A.x3•x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t
    9.不等式组的解集在数轴上表示为( )
    A. B. C. D.
    10.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是(  )

    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若am=5,an=6,则am+n=________.
    12.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.

    13.如图,PC是⊙O的直径,PA切⊙O于点P,AO交⊙O于点B;连接BC,若,则______.

    14.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=,则阴影部分的面积是___.

    15.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
    16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
    (1)求证:AE是⊙O的切线;
    (2)若AE=12,CD=10,求⊙O的半径。

    18.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.

    (1)判断直线AC与圆O的位置关系,并证明你的结论;
    (2)若AC=8,cos∠BED=,求AD的长.
    19.(8分)如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C. 

    (1)求一次函数与反比例函数的解析式; 
    (2)求△ABC的面积.
    20.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.
    滑行时间x/s
    0
    1
    2
    3

    滑行距离y/m
    0
    4
    12
    24

    (1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.
    21.(8分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.

    队别
    平均分
    中位数
    方差
    合格率
    优秀率
    七年级
    6.7
    m
    3.41
    90%
    n
    八年级
    7.1
    7.5
    1.69
    80%
    10%
    (1)请依据图表中的数据,求a、b的值;
    (2)直接写出表中的m、n的值;
    (3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
    22.(10分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)
    (1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)
    (2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
    (3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?

    23.(12分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.

    (1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
    (2)知识探究:
    ①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
    ②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
    (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.

    24.为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
    求参与问卷调查的总人数.补全条形统计图.该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
    2、C
    【解析】
    试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.

    考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
    3、D
    【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
    详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
    B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
    C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
    D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    4、B
    【解析】
    由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.
    【详解】
    ∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,
    ∴∠MAN=∠MON,
    ∴ ,
    ∴点(x,y)一定在过原点的直线上.
    故选B.
    【点睛】
    本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.
    5、B
    【解析】
    先变形,再整体代入,即可求出答案.
    【详解】
    ∵3a﹣2b=1,
    ∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
    故选:B.
    【点睛】
    本题考查了求代数式的值,能够整体代入是解此题的关键.
    6、C
    【解析】
    根据题意知小李所对应的坐标是(7,4).
    故选C.
    7、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    连接AD,

    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.
    故选C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    8、D
    【解析】
    试题解析:A、 原式计算错误,故本选项错误;
    B、 原式计算错误,故本选项错误;
    C、 原式计算错误,故本选项错误;
    D、 原式计算正确,故本选项正确;
    故选D.
    点睛:同底数幂相除,底数不变,指数相减.
    9、A
    【解析】
    分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.
    【详解】

    解不等式①得,x>1;
    解不等式②得,x>2;
    ∴不等式组的解集为:x≥2,
    在数轴上表示为:

    故选A.
    【点睛】
    本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.
    10、B
    【解析】
    根据题意找到从左面看得到的平面图形即可.
    【详解】
    这个立体图形的左视图是,
    故选:B.
    【点睛】
    本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    根据同底数幂乘法性质am·an=am+n,即可解题.
    【详解】
    解:am+n= am·an=5×6=1.
    【点睛】
    本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.
    12、或5或1.
    【解析】
    根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.
    【详解】
    解:如图
    (1)当在△ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.
    (2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,
    (3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:
    则AN=3,AC=,AD=m,
    得:,得m=,
    综上所述:m为或5或1,
    所以答案:或5或1.
    【点睛】
    本题主要考查等腰三角形的性质,注意分类讨论的完整性.
    13、26°
    【解析】
    根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.
    【详解】
    由圆周角定理得:∠AOP=2∠C=64°.
    ∵PC是⊙O的直径,PA切⊙O于点P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.
    故答案为:26°.
    【点睛】
    本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    14、﹣
    【解析】
    连接OB.
    ∵AB是⊙O切线,
    ∴OB⊥AB,
    ∵OC=OB,∠C=30°,
    ∴∠C=∠OBC=30°,
    ∴∠AOB=∠C+∠OBC=60°,
    在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,
    ∴OB=1,
    ∴S阴=S△ABO﹣S扇形OBD=×1×﹣ =﹣ .

    15、.
    【解析】
    平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
    【详解】
    ∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
    故答案为:y=1(x﹣1)1+1.
    【点睛】
    本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.
    16、1
    【解析】
    解:3=2+1;
    5=3+2;
    8=5+3;
    13=8+5;

    可以发现:从第三个数起,每一个数都等于它前面两个数的和.
    则第8个数为13+8=21;
    第9个数为21+13=34;
    第10个数为34+21=1.
    故答案为1.
    点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2).
    【解析】
    (1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
    (2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
    【详解】
    (1)证明:连接OA,交BC于G,

    ∵∠ABC=∠ADB.∠ABC=∠ADE,
    ∴∠ADB=∠ADE,
    ∴,
    ∴OA⊥BC,
    ∵四边形ABCE是平行四边形,
    ∴AE∥BC,
    ∴OA⊥AE,
    ∴AE是⊙O的切线;
    (2)连接OC,
    ∵AB=AC=CE,
    ∴∠CAE=∠E,
    ∵四边形ABCE是平行四边形,
    ∴BC∥AE,∠ABC=∠E,
    ∴∠ADC=∠ABC=∠E,
    ∴△ACE∽△DAE,,
    ∵AE=12,CD=10,
    ∴AE2=DE•CE,
    144=(10+CE)CE,
    解得:CE=8或-18(舍),
    ∴AC=CE=8,
    ∴Rt△AGC中,AG==2,
    设⊙O的半径为r,
    由勾股定理得:r2=62+(r-2)2,
    r=,
    则⊙O的半径是.
    【点睛】
    此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.
    18、(1)AC与⊙O相切,证明参见解析;(2).
    【解析】
    试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.
    试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.

    考点:1.切线的判定;2.解直角三角形.
    19、(1)y=2x﹣5,;(2).
    【解析】
    试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;
    (2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积.
    试题解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式为,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;
    (2)
    如图,
    S△ABC=
    考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.
    20、(1)20s;(2)
    【解析】
    (1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;
    (2)根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    解:(1)∵该抛物线过点(0,0),
    ∴设抛物线解析式为y=ax2+bx,
    将(1,4)、(2,12)代入,得:

    解得:,
    所以抛物线的解析式为y=2x2+2x,
    当y=840时,2x2+2x=840,
    解得:x=20(负值舍去),
    即他需要20s才能到达终点;
    (2)∵y=2x2+2x=2(x+)2﹣,
    ∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+)2﹣﹣5=2(x+)2﹣.
    【点睛】
    本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.
    21、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.
    【解析】
    试题分析:(1)根据题中数据求出a与b的值即可;
    (2)根据(1)a与b的值,确定出m与n的值即可;
    (3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.
    试题解析:(1)根据题意得:
    解得a=5,b=1;
    (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;
    优秀率为=20%,即n=20%;
    (3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,
    故八年级队比七年级队成绩好.
    考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.
    22、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元
    【解析】
    (1)利用待定系数法可求出y与x以及z与x之间的函数关系式;
    (1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;
    (3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.
    【详解】
    (1)图①可得函数经过点(100,1000),
    设抛物线的解析式为y=ax1(a≠0),
    将点(100,1000)代入得:1000=10000a,
    解得:a=,
    故y与x之间的关系式为y=x1.
    图②可得:函数经过点(0,30)、(100,10),
    设z=kx+b,则,
    解得: ,
    故z与x之间的关系式为z=﹣x+30(0≤x≤100);
    (1)W=zx﹣y=﹣x1+30x﹣x1
    =﹣x1+30x
    =﹣(x1﹣150x)
    =﹣(x﹣75)1+1115,
    ∵﹣<0,
    ∴当x=75时,W有最大值1115,
    ∴年产量为75万件时毛利润最大,最大毛利润为1115万元;
    (3)令y=360,得x1=360,
    解得:x=±60(负值舍去),
    由图象可知,当0<y≤360时,0<x≤60,
    由W=﹣(x﹣75)1+1115的性质可知,
    当0<x≤60时,W随x的增大而增大,
    故当x=60时,W有最大值1080,
    答:今年最多可获得毛利润1080万元.
    【点睛】
    本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.
    23、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)
    【解析】
    (1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;
    (2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系
    (3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.
    【详解】
    解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,
    ∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
    ∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,
    ,
    ∴△BAE≌△CAF,
    ∴BE=CF,
    ∴EC+CF=EC+BE=BC,
    即EC+CF=BC;
    (2)知识探究:
    ①线段EC,CF与BC的数量关系为:CE+CF=BC.
    理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.

    类比(1)可得:E′C+CF′=BC,
    ∵AE′∥EG,
    ∴△CAE′∽△CGE


    同理可得:,

    即;
    ②CE+CF=BC.
    理由如下:
    过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.

    类比(1)可得:E′C+CF′=BC,
    ∵AE′∥EG,∴△CAE′∽△CAE,
    ∴,∴CE=CE′,
    同理可得:CF=CF′,
    ∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
    即CE+CF=BC;
    (3)连接BD与AC交于点H,如图所示:

    在Rt△ABH中,
    ∵AB=8,∠BAC=60°,
    ∴BH=ABsin60°=8×=,
    AH=CH=ABcos60°=8×=4,
    ∴GH===1,
    ∴CG=4-1=3,
    ∴,
    ∴t=(t>2),
    由(2)②得:CE+CF=BC,
    ∴CE=BC -CF=×8-=.
    【点睛】
    本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.
    24、(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人.
    【解析】
    (1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;
    (2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;
    (3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.
    【详解】
    (1)(人.
    答:参与问卷调查的总人数为500人.
    (2)(人.
    补全条形统计图,如图所示.

    (3)(人.
    答:这些人中最喜欢微信支付方式的人数约为2800人.
    【点睛】
    本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.

    相关试卷

    2023年广西梧州市中考数学二模试卷(含解析):

    这是一份2023年广西梧州市中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    梧州市重点中学2022-2023学年中考数学模拟试题含解析:

    这是一份梧州市重点中学2022-2023学年中考数学模拟试题含解析,共18页。

    2023年广西梧州市苍梧县中考数学一模试卷(含解析):

    这是一份2023年广西梧州市苍梧县中考数学一模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map