开学活动
搜索
    上传资料 赚现金

    2022年山东省无棣县鲁北高新技术开发区实验学校中考考前最后一卷数学试卷含解析

    2022年山东省无棣县鲁北高新技术开发区实验学校中考考前最后一卷数学试卷含解析第1页
    2022年山东省无棣县鲁北高新技术开发区实验学校中考考前最后一卷数学试卷含解析第2页
    2022年山东省无棣县鲁北高新技术开发区实验学校中考考前最后一卷数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省无棣县鲁北高新技术开发区实验学校中考考前最后一卷数学试卷含解析

    展开

    这是一份2022年山东省无棣县鲁北高新技术开发区实验学校中考考前最后一卷数学试卷含解析,共21页。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.a的倒数是3,则a的值是(  )
    A. B.﹣ C.3 D.﹣3
    2.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是(     )
    A.2                        B.3                        C.4                                   D.5
    3.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
    A.-4℃ B.4℃ C.8℃ D.-8℃
    4.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )
    A.圆柱 B.正方体 C.球 D.直立圆锥
    5.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是(  )
    A. B. C. D.
    6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=(  )

    A.40° B.110° C.70° D.140°
    7.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )
    A. B. C. D.
    8.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
    A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
    9.若代数式的值为零,则实数x的值为(  )
    A.x=0 B.x≠0 C.x=3 D.x≠3
    10.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是(  )

    A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
    11.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )
    A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×103
    12.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
    A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若,,则的值为 ________ .
    14.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)

    15.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______

    16.已知,则______
    17.解不等式组
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得________;
    (2)解不等式②,得________;
    (3)把不等式①和②的解集在数轴上表示出来;

    (4)原不等式组的解集为___________.
    18.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
    20.(6分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.

    21.(6分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
    (1)求这条抛物线的表达式;
    (2)求∠ACB的度数;
    (3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.

    22.(8分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.
    (1)求抛物线的表达式;
    (2)如图,当CP//AO时,求∠PAC的正切值;

    (3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.
    23.(8分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,
    (1)求证MF=NF
    (2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)

    24.(10分)计算:(﹣2)0++4cos30°﹣|﹣|.
    25.(10分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.

    26.(12分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
    (1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
    (2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?

    27.(12分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
    (1)求证:△ADC∽△ACB;
    (2)CE与AD有怎样的位置关系?试说明理由;
    (3)若AD=4,AB=6,求的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据倒数的定义进行解答即可.
    【详解】
    ∵a的倒数是3,∴3a=1,解得:a=.
    故选A.
    【点睛】
    本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.
    2、D
    【解析】
    设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.
    【详解】
    设这个数是a,
    把x=1代入得:(-2+1)=1-,
    ∴1=1-,
    解得:a=1.
    故选:D.
    【点睛】
    本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.
    3、C
    【解析】
    根据题意列出算式,计算即可求出值.
    【详解】
    解:根据题意得:6-(-2)=6+2=8,
    则室内温度比室外温度高8℃,
    故选:C.
    【点睛】
    本题考查了有理数的减法,熟练掌握运算法则是解题的关键.
    4、B
    【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.
    考点:简单几何体的三视图.
    5、A
    【解析】
    设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.
    解:设乙骑自行车的平均速度为x千米/时,由题意得:
    =,
    故选A.
    6、B
    【解析】
    先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
    【详解】
    ∵AB∥CD,
    ∴∠ACD+∠BAC=180°,
    ∵∠ACD=40°,
    ∴∠BAC=180°﹣40°=140°,
    ∵AE平分∠CAB,
    ∴∠BAE=∠BAC=×140°=70°,
    ∴∠DEA=180°﹣∠BAE=110°,
    故选B.
    【点睛】
    本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
    7、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    数据0.000000007用科学记数法表示为7×10-1.
    故选A.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    8、B
    【解析】
    试题分析:“960万”用科学记数法表示为9.6×106,故选B.
    考点:科学记数法—表示较大的数.
    9、A
    【解析】
    根据分子为零,且分母不为零解答即可.
    【详解】
    解:∵代数式的值为零,
    ∴x=0,
    此时分母x-3≠0,符合题意.
    故选A.
    【点睛】
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
    10、C
    【解析】
    【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
    【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
    ∴不等式y1>y2的解集是﹣3<x<0或x>2,
    故选C.
    【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
    11、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:5550=5.55×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、C
    【解析】
    绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
    【详解】
    n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
    【点睛】
    本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、-.
    【解析】
    分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
    详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.
    故答案为.
    点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.
    14、2a+12b
    【解析】
    如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,

    因为∠ABC<20°,所以,
    翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.
    15、
    【解析】

    如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90∘,AC=BC=,
    ∴AB==2,
    ∴BD=2×=,
    C′D=×2=1,
    ∴BC′=BD−C′D=−1.
    故答案为:−1.
    点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.
    16、34
    【解析】
    ∵,∴=,
    故答案为34.
    17、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;
    【解析】
    (1)先移项,再合并同类项,求出不等式1的解集即可;
    (2)先去分母、移项,再合并同类项,求出不等式2的解集即可;
    (1)把两不等式的解集在数轴上表示出来即可;
    (4)根据数轴上不等式的解集,求出其公共部分即可.
    【详解】
    (1)解不等式①,得:x<1;
    (2)解不等式②,得:x≥﹣2;
    (1)把不等式①和②的解集在数轴上表示出来如下:

    (4)原不等式组的解集为:﹣2≤x<1,
    故答案为:x<1、x≥﹣2、﹣2≤x<1.
    【点睛】
    本题主要考查一元一次不等式组的解法及在数轴上的表示。
    18、
    【解析】
    根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.
    【详解】
    正△A1B1C1的面积是,
    而△A2B2C2与△A1B1C1相似,并且相似比是1:2,
    则面积的比是,则正△A2B2C2的面积是×;
    因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;
    依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.
    所以第8个正△A8B8C8的面积是×()7=.
    故答案为.
    【点睛】
    本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、1
    【解析】
    先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
    【详解】
    解:a3b+2a2b2+ab3
    =ab(a2+2ab+b2)
    =ab(a+b)2,
    将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
    故代数式a3b+2a2b2+ab3的值是1.
    20、(1);(2)1<x<1.
    【解析】
    (1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
    (2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
    【详解】
    解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
    ∴n=﹣1+5,解得:n=1,
    ∴点A的坐标为(1,1).
    ∵反比例函数y=(k≠0)过点A(1,1),
    ∴k=1×1=1,
    ∴反比例函数的解析式为y=.
    联立,解得:或,
    ∴点B的坐标为(1,1).
    (2)观察函数图象,发现:
    当1<x<1.时,反比例函数图象在一次函数图象下方,
    ∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
    【点睛】
    本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
    21、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
    【解析】
    (1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
    (2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
    (3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
    【详解】
    (1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
    (2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
    AE•BC=OC•AB,∴AE==.
    在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
    (3)作BH⊥CD于H,如图2,设H(m,n).
    ∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
    m2+(n﹣3)2=()2=,②
    ②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
    当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
    当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
    综上所述:D点坐标为(1,2)或(4,﹣25).

    【点睛】
    本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
    22、(1)抛物线的表达式为;(2);(3)P点的坐标是.
    【解析】
    分析:
    (1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;
    (2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,结合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;
    (3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.
    详解:
    (1)∵直线y=x+1经过点A、C,点A在x轴上,点C在y轴上
    ∴A点坐标是(﹣1,0),点C坐标是(0,1),
    又∵抛物线过A,C两点,

    解得,
    ∴抛物线的表达式为;
    (2)作PH⊥AC于H,
    ∵点C、P在抛物线上,CP//AO, C(0,1),A(-1,0)
    ∴P(-2,1),AC=,
    ∴PC=2,,
    ∴PH=,
    ∵A(﹣1,0),C(0,1),
    ∴∠CAO=15°.
    ∵CP//AO,
    ∴∠ACP=∠CAO=15°,
    ∵PH⊥AC,
    ∴CH=PH=,
    ∴.
    ∴;

    (3)∵,
    ∴抛物线的对称轴为直线,
    ∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,
    ∴PQ∥AO,且PQ=AO=1.
    ∵P,Q都在抛物线上,
    ∴P,Q关于直线对称,
    ∴P点的横坐标是﹣3,
    ∵当x=﹣3时,,
    ∴P点的坐标是.

    点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt△APH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ∥AO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.
    【详解】
    请在此输入详解!
    23、(1)见解析;(2)MF= NF.
    【解析】
    (1)连接AE,BD,先证明△ACE和△BCD全等,然后得到AE=BD,然后再通过三角形中位线证明即可.
    (2)根据图(2)(3)进行合理猜想即可.
    【详解】

    解:(1)连接AE,BD
    在△ACE和△BCD中

    ∴△ACE≌△BCD
    ∴AE=BD
    又∵点M,N,F分别为AB,ED,AD的中点
    ∴MF=BD,NF=AE
    ∴MF=NF
    (2) MF= NF.
    方法同上.
    【点睛】
    本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.
    24、1
    【解析】
    分析:按照实数的运算顺序进行运算即可.
    详解:原式

    =1.
    点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
    25、证明见解析.
    【解析】
    由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
    证明:∵BE∥DF,∴∠ABE=∠D,
    在△ABE和△FDC中,
    ∠ABE=∠D,AB=FD,∠A=∠F
    ∴△ABE≌△FDC(ASA),
    ∴AE=FC.
    “点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
    26、(1)10,1;(2).
    【解析】
    (1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;
    (2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.
    【详解】
    解:(1)图象过点,

    解得


    的顶点坐标为.

    ∴当时,最大=1.
    答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.
    (2)∵函数图象的对称轴为直线,
    可知点关于对称轴的对称点是,
    又∵函数图象开口向下,
    ∴当时,.
    答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.
    【点睛】
    本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.
    27、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
    【解析】
    (1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
    (2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
    (3)根据相似三角形的性质列出比例式,计算即可.
    【详解】
    解:(1)∵AC平分∠DAB,
    ∴∠DAC=∠CAB,
    又∵AC2=AB•AD,
    ∴AD:AC=AC:AB,
    ∴△ADC∽△ACB;
    (2)CE∥AD,
    理由:∵△ADC∽△ACB,
    ∴∠ACB=∠ADC=90°,
    又∵E为AB的中点,
    ∴∠EAC=∠ECA,
    ∵∠DAC=∠CAE,
    ∴∠DAC=∠ECA,
    ∴CE∥AD;
    (3)∵AD=4,AB=6,CE=AB=AE=3,
    ∵CE∥AD,
    ∴∠FCE=∠DAC,∠CEF=∠ADF,
    ∴△CEF∽△ADF,
    ∴==,
    ∴=.

    相关试卷

    山东省无棣县鲁北高新技术开发区实验学校2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案:

    这是一份山东省无棣县鲁北高新技术开发区实验学校2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。

    2023-2024学年山东省无棣县鲁北高新技术开发区实验学校八年级数学第一学期期末检测模拟试题含答案:

    这是一份2023-2024学年山东省无棣县鲁北高新技术开发区实验学校八年级数学第一学期期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,一次演讲比赛中,小明的成绩如下,若,则 m + n 的值为等内容,欢迎下载使用。

    山东省无棣县鲁北高新技术开发区实验学校2022年中考数学猜题卷含解析:

    这是一份山东省无棣县鲁北高新技术开发区实验学校2022年中考数学猜题卷含解析,共21页。试卷主要包含了在数轴上到原点距离等于3的数是,已知下列命题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map