|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析01
    2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析02
    2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析

    展开
    这是一份2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,是一元二次方程的是,在平面直角坐标系中,将点P等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )

    A. B. C. D.
    2.实数a在数轴上的位置如图所示,则下列说法不正确的是(  )

    A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<0
    3.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是(  )

    A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c
    4.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

    A. B. C.- D.
    5.已知关于x的一元二次方程有实数根,则m的取值范围是( )
    A. B. C. D.
    6.如图,在中,E为边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的大小为( )

    A.20° B.30° C.36° D.40°
    7.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是(  )
    A. B. C. D.
    8.下列方程中,是一元二次方程的是(  )
    A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=0
    9.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是(  )

    A.30° B.60° C.90° D.45°
    10.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为(  )
    A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)
    C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.

    12.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)

    13.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    14.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.

    15.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    16.一次函数与的图象如图,则的解集是__.

    三、解答题(共8题,共72分)
    17.(8分)先化简,再求值:(1﹣)÷,其中x=1.
    18.(8分)列方程或方程组解应用题:
    去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.
    19.(8分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.
    求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)
    20.(8分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;
    (2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;
    (3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.
    21.(8分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )

    A.40° B.55° C.65° D.75°
    22.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
    请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

    23.(12分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
    (1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
    ①求证:△ABP∽△BCP;
    ②若 PA=3,PC=4,则 PB= .
    (2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
    ①求∠CPD 的度数;
    ②求证:P 点为△ABC 的费马点.

    24.如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).
    (1)求抛物线的解析式及其顶点D的坐标;
    (2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;
    (3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    从数轴上可以看出a、b都是负数,且a<b,由此逐项分析得出结论即可.
    【详解】
    由数轴可知:a B、同号相加,取相同的符号,a+b<0是正确的;
    C、a<b<0,,故选项是错误的;
    D、a-b=a+(-b)取a的符号,a-b<0是正确的.
    故选:C.
    【点睛】
    此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.
    2、B
    【解析】
    试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.
    故选B.
    考点:实数与数轴.
    3、A
    【解析】
    根据数轴上点的位置确定出a,b,c的范围,判断即可.
    【详解】
    由数轴上点的位置得:a<b<0<c,
    ∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.
    故选A.
    【点睛】
    考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.
    4、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    5、C
    【解析】
    解:∵关于x的一元二次方程有实数根,
    ∴△==,
    解得m≥1,
    故选C.
    【点睛】
    本题考查一元二次方程根的判别式.
    6、C
    【解析】
    由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴,
    由折叠的性质得:,,
    ∴,,
    ∴;
    故选C.
    【点睛】
    本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
    7、A
    【解析】
    ∵Rt△ABC中,∠C=90°,sinA=,
    ∴cosA=,
    ∴∠A+∠B=90°,
    ∴sinB=cosA=.
    故选A.
    8、D
    【解析】
    试题解析:含有两个未知数,不是整式方程,C没有二次项.
    故选D.
    点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.
    9、B
    【解析】
    【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.
    【详解】∵∠BAC=30°,
    ∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),
    故选B.
    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    10、A
    【解析】
    分顺时针旋转,逆时针旋转两种情形求解即可.
    【详解】
    解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),

    故选A.
    【点睛】
    本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、143549
    【解析】
    根据题中密码规律确定所求即可.
    【详解】
    532=5×3×10000+5×2×100+5×(2+3)=151025
    924=9×2×10000+9×4×100+9×(2+4)=183654,
    863=8×6×10000+8×3×100+8×(3+6)=482472,
    ∴725=7×2×10000+7×5×100+7×(2+5)=143549.
    故答案为:143549
    【点睛】
    本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.
    12、5π
    【解析】
    根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.
    【详解】
    ∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.
    故答案为:5π.
    【点睛】
    本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.
    13、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    14、1.
    【解析】
    试题分析:∵四边形ABCD是菱形,
    ∴OD=OB,∠COD=90°,
    ∵DH⊥AB,
    ∴OH=BD=OB,
    ∴∠OHB=∠OBH,
    又∵AB∥CD,
    ∴∠OBH=∠ODC,
    在Rt△COD中,∠ODC+∠DCO=90°,
    在Rt△DHB中,∠DHO+∠OHB=90°,
    ∴∠DHO=∠DCO=×50°=1°.
    考点:菱形的性质.
    15、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    【点睛】
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    16、
    【解析】
    不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.
    【详解】
    解:不等式的解集是.
    故答案为:.
    【点睛】
    本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.

    三、解答题(共8题,共72分)
    17、.
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
    【详解】
    原式==
    当x=1时,原式=.
    【点睛】
    本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
    18、吉普车的速度为30千米/时.
    【解析】
    先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.
    【详解】
    解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.
    由题意得:.
    解得,x=20
    经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.
    答:吉普车的速度为30千米/时.
    点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.
    19、(1) (2)6.03米
    【解析】
    分析:延长ED,AM交于点P,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.
    详解:(1)如图,延长ED,AM交于点P,
    ∵DE∥AB,
    ∴, 即∠MPD=90°
    ∵∠CDE=162°

    (2)如图,在Rt△PCD中, CD=3米,
    ∴PC = 米
    ∵AC=5.5米, EF=0.4米,
    ∴米
    答:摄像头下端点F到地面AB的距离为6.03米.

    点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.
    20、(1)60;90°;统计图详见解析;(2)300;(3).
    【解析】
    试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;
    (2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;
    (3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率.
    试题解析:(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),
    “基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,
    补全条形统计图如图所示:

    (2)根据题意得:900×=300(人),
    则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;
    (3)列表如下:
    剪 石 布
    剪 (剪,剪) (石,剪) (布,剪)
    石 (剪,石) (石,石) (布,石)
    布 (剪,布) (石,布) (布,布)
    所有等可能的情况有9种,其中两人打平的情况有3种,
    则P==.
    考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法
    21、C.
    【解析】
    试题分析:由作图方法可得AG是∠CAB的角平分线,
    ∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,
    故选C.
    考点:作图—基本作图.
    22、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    【解析】
    分析:(1)应用待定系数法分段求函数解析式;
    (2)观察图象可得;
    (3)代入临界值y=10即可.
    详解:(1)设线段AB解析式为y=k1x+b(k≠0)
    ∵线段AB过点(0,10),(2,14)
    代入得
    解得
    ∴AB解析式为:y=2x+10(0≤x<5)
    ∵B在线段AB上当x=5时,y=20
    ∴B坐标为(5,20)
    ∴线段BC的解析式为:y=20(5≤x<10)
    设双曲线CD解析式为:y=(k2≠0)
    ∵C(10,20)
    ∴k2=200
    ∴双曲线CD解析式为:y=(10≤x≤24)
    ∴y关于x的函数解析式为:
    (2)由(1)恒温系统设定恒温为20°C
    (3)把y=10代入y=中,解得,x=20
    ∴20-10=10
    答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
    23、(1)①证明见解析;②;(2)①60°;②证明见解析;
    【解析】
    试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
    ②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
    (2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
    ②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
    试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
    ∴∠PAB=∠PBC,
    又∵∠APB=∠BPC=120°,
    ∴△ABP∽△BCP,
    ②解:∵△ABP∽△BCP,
    ∴,
    ∴PB2=PA•PC=12,
    ∴PB=2;
    (2)解:①∵△ABE与△ACD都为等边三角形,
    ∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
    ∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
    在△ACE和△ABD中,

    ∴△ACE≌△ABD(SAS),
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠CPD=∠6=∠5=60°;
    ②证明:∵△ADF∽△CFP,
    ∴AF•PF=DF•CF,
    ∵∠AFP=∠CFD,
    ∴△AFP∽△CDF.
    ∴∠APF=∠ACD=60°,
    ∴∠APC=∠CPD+∠APF=120°,
    ∴∠BPC=120°,
    ∴∠APB=360°﹣∠BPC﹣∠APC=120°,
    ∴P点为△ABC的费马点.

    考点:相似形综合题
    24、 (1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.
    【解析】
    分析:
    (1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;
    (2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;
    (3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.
    详解:
    (1)∵抛物线y=ax2+2x+1经过点B(4,0),
    ∴16a+1+1=0,
    ∴a=﹣1,
    ∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,
    ∴D(1,9);
    (2)∵当x=0时,y=1,
    ∴C(0,1).
    设直线CD的解析式为y=kx+b.
    将点C、D的坐标代入得:,解得:k=1,b=1,
    ∴直线CD的解析式为y=x+1.
    当y=0时,x+1=0,解得:x=﹣1,
    ∴直线CD与x轴的交点坐标为(﹣1,0).
    ∵当P在直线CD上时,|PC﹣PD|取得最大值,
    ∴p=﹣1;
    (3)存在,
    理由:如图,由(2)知,C(0,1),
    ∵B(4,0),
    ∴直线BC的解析式为y=﹣2x+1,
    过点Q作QE∥y轴交BC于E,
    设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),
    ∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,
    ∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,
    ∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).

    点睛:(1)解第2小题时,知道当点P在直线CD上时,|PC﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,﹣m2+2m+1)(0<m<4),并结合点B、C的坐标把△BCQ的面积用含m的代数式表达出来.

    相关试卷

    2022届山东省烟台市、龙口市重点达标名校中考数学四模试卷含解析: 这是一份2022届山东省烟台市、龙口市重点达标名校中考数学四模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022学年山东省青岛即墨市达标名校中考数学适应性模拟试题含解析: 这是一份2021-2022学年山东省青岛即墨市达标名校中考数学适应性模拟试题含解析,共21页。试卷主要包含了如图,AB∥CD,那么,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    2021-2022学年山东省烟台市、龙口市重点达标名校中考一模数学试题含解析: 这是一份2021-2022学年山东省烟台市、龙口市重点达标名校中考一模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上可表示为,的整数部分是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map