2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列四个命题中,真命题是( )
A.相等的圆心角所对的两条弦相等
B.圆既是中心对称图形也是轴对称图形
C.平分弦的直径一定垂直于这条弦
D.相切两圆的圆心距等于这两圆的半径之和
2.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).
A.1 B.2 C.3 D.4
3.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )
A.0.86×104 B.8.6×102 C.8.6×103 D.86×102
4.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为( )
A. B.
C. D.
5.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
A.5 B.6 C.7 D.9
6.如图,在中,点D为AC边上一点,则CD的长为( )
A.1 B. C.2 D.
7.如图图形中是中心对称图形的是( )
A. B.
C. D.
8.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元 B.100元 C.80元 D.60元
9.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为( )
A.13 B.17 C.18 D.25
10.计算:的结果是( )
A. B.. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
12.计算:____.
13.如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.
14.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .
15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
16.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)
三、解答题(共8题,共72分)
17.(8分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
(1)求圆O的半径;
(2)如果AE=6,求EF的长.
18.(8分)解方程:.
19.(8分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.
求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)
20.(8分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
21.(8分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:
(1)这四个班参与大赛的学生共__________人;
(2)请你补全两幅统计图;
(3)求图1中甲班所对应的扇形圆心角的度数;
(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.
22.(10分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径.
23.(12分)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
24.如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;
B. 圆既是中心对称图形也是轴对称图形,正确;
C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;
D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.
故选B.
2、C
【解析】
∵EF⊥AC,点G是AE中点,
∴OG=AG=GE=AE,
∵∠AOG=30°,
∴∠OAG=∠AOG=30°,
∠GOE=90°-∠AOG=90°-30°=60°,
∴△OGE是等边三角形,故(3)正确;
设AE=2a,则OE=OG=a,
由勾股定理得,AO=,
∵O为AC中点,
∴AC=2AO=2,
∴BC=AC=,
在Rt△ABC中,由勾股定理得,AB==3a,
∵四边形ABCD是矩形,
∴CD=AB=3a,
∴DC=3OG,故(1)正确;
∵OG=a,BC=,
∴OG≠BC,故(2)错误;
∵S△AOE=a•=,
SABCD=3a•=32,
∴S△AOE=SABCD,故(4)正确;
综上所述,结论正确是(1)(3)(4)共3个,
故选C.
【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.
3、C
【解析】
科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
【详解】
数据8 600用科学记数法表示为8.6×103
故选C.
【点睛】
用科学记数法表示一个数的方法是
(1)确定a:a是只有一位整数的数;
(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).
4、D
【解析】
解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
5、B
【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
【详解】
∵一组数据1,7,x,9,5的平均数是2x,
∴,
解得:,
则从大到小排列为:3,5,1,7,9,
故这组数据的中位数为:1.
故选B.
【点睛】
此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
6、C
【解析】
根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.
【详解】
∵∠DBC=∠A,∠C=∠C,
∴△BCD∽△ACB,
∴
∴
∴CD=2.
故选:C.
【点睛】
主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
7、B
【解析】
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.
【点睛】
本题考察了中心对称图形的含义.
8、C
【解析】
解:设该商品的进价为x元/件,
依题意得:(x+20)÷=200,解得:x=1.
∴该商品的进价为1元/件.
故选C.
9、C
【解析】
在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.
10、B
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:原式=
=
=
故选;B
【点睛】
本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、17
【解析】
先利用完全平方公式展开,然后再求和.
【详解】
根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
【点睛】
(1)完全平方公式:.
(2)平方差公式:(a+b)(a-b)=.
(3)常用等价变形:
,
,
.
12、5.
【解析】
试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.
考点:绝对值计算.
13、 .
【解析】
如图,过点P作PH⊥OB于点H,
∵点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,
∴9=m2,且m>0,解得,m=3.∴PH=OH=3.
∵△PAB是等边三角形,∴∠PAH=60°.
∴根据锐角三角函数,得AH=.∴OB=3+
∴S△POB=OB•PH=.
14、3
【解析】
试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.
考点:3.菱形的性质;3.解直角三角形;3.网格型.
15、15π
【解析】
【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
【详解】设圆锥母线长为l,∵r=3,h=4,
∴母线l=,
∴S侧=×2πr×5=×2π×3×5=15π,
故答案为15π.
【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
16、<
【解析】
先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.
【详解】
由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,
∵1<x1<1,3<x1<4,
∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,
∴y1<y1.
故答案为<.
三、解答题(共8题,共72分)
17、 (1) 圆的半径为4.5;(2) EF=.
【解析】
(1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
【详解】
(1)连接OD,
∵直径AB⊥弦CD,CD=4,
∴DH=CH=CD=2,
在Rt△ODH中,AH=5,
设圆O的半径为r,
根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
解得:r=4.5,
则圆的半径为4.5;
(2)过O作OG⊥AE于G,
∴AG=AE=×6=3,
∵∠A=∠A,∠AGO=∠AHF,
∴△AGO∽△AHF,
∴,
∴,
∴AF=,
∴EF=AF﹣AE=﹣6=.
【点睛】
本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.
18、
【解析】
分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.
详解:去分母,得.
去括号,得.
移项,得 .
合并同类项,得 .
系数化为1,得.
经检验,原方程的解为.
点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.
19、(1) (2)6.03米
【解析】
分析:延长ED,AM交于点P,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.
详解:(1)如图,延长ED,AM交于点P,
∵DE∥AB,
∴, 即∠MPD=90°
∵∠CDE=162°
∴
(2)如图,在Rt△PCD中, CD=3米,
∴PC = 米
∵AC=5.5米, EF=0.4米,
∴米
答:摄像头下端点F到地面AB的距离为6.03米.
点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.
20、2m2+2m+5;1;
【解析】
先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.
【详解】
解:原式=2(m2﹣2m+1)+1m+3,
=2m2﹣4m+2+1m+3=2m2+2m+5,
∵m是方程2x2+2x﹣1=0的根,
∴2m2+2m﹣1=0,即2m2+2m=1,
∴原式=2m2+2m+5=1.
【点睛】
此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.
21、(1)100;(2)见解析;(3)108°;(4)1250.
【解析】
试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;
(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;
(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;
(4)根据样本估计总体,可得答案.
试题解析:(1)这四个班参与大赛的学生数是:
30÷30%=100(人);
故答案为100;
(2)丁所占的百分比是:×100%=35%,
丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,
则丙班得人数是:100×15%=15(人);
如图:
(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;
(4)根据题意得:2000×=1250(人).
答:全校的学生中参与这次活动的大约有1250人.
考点:条形统计图;扇形统计图;样本估计总体.
22、(1)见解析;(1)⊙O半径为
【解析】
(1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE是⊙O的切线;
(1)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.
【详解】
解:(1)连接OA,
∵OA=OD,
∴∠1=∠1.
∵DA平分∠BDE,
∴∠1=∠2.
∴∠1=∠2.∴OA∥DE.
∴∠OAE=∠4,
∵AE⊥CD,∴∠4=90°.
∴∠OAE=90°,即OA⊥AE.
又∵点A在⊙O上,
∴AE是⊙O的切线.
(1)∵BD是⊙O的直径,
∴∠BAD=90°.
∵∠3=90°,∴∠BAD=∠3.
又∵∠1=∠2,∴△BAD∽△AED.
∴,
∵BA=4,AE=1,∴BD=1AD.
在Rt△BAD中,根据勾股定理,
得BD=.
∴⊙O半径为.
23、(1)75;4;(2)CD=4.
【解析】
(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
【详解】
解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴.
又∵AO=3,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
∴AB=AD=4.
(2)过点B作BE∥AD交AC于点E,如图所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴.
∵AO=3,
∴EO=,
∴AE=4.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=1.
在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
解得:CD=4.
【点睛】
本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
24、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).
【解析】
(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;
(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;
②分三种情况利用方程的思想即可得出结论;
B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;
②先判断出∠APC=90°,再分情况讨论计算即可.
【详解】
解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,
∴A(3,0),C(0,2),
∴OA=3,OC=2.
∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
∴四边形OABC是矩形,
∴AB=OC=2,BC=OA=3.
在Rt△ABC中,根据勾股定理得,AC==3.
故答案为2,3,3;
(1)选A.
①由(1)知,BC=3,AB=2,由折叠知,CD=AD.
在Rt△BCD中,BD=AB﹣AD=2﹣AD,
根据勾股定理得,CD1=BC1+BD1,
即:AD1=16+(2﹣AD)1,
∴AD=5;
②由①知,D(3,5),设P(0,y).
∵A(3,0),
∴AP1=16+y1,DP1=16+(y﹣5)1.
∵△APD为等腰三角形,
∴分三种情况讨论:
Ⅰ、AP=AD,
∴16+y1=15,
∴y=±3,
∴P(0,3)或(0,﹣3);
Ⅱ、AP=DP,
∴16+y1=16+(y﹣5)1,
∴y=,
∴P(0,);
Ⅲ、AD=DP,15=16+(y﹣5)1,
∴y=1或2,
∴P(0,1)或(0,2).
综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).
选B.①由A①知,AD=5,由折叠知,AE=AC=1,DE⊥AC于E.
在Rt△ADE中,DE==;
②∵以点A,P,C为顶点的三角形与△ABC全等,
∴△APC≌△ABC,或△CPA≌△ABC,
∴∠APC=∠ABC=90°.
∵四边形OABC是矩形,
∴△ACO≌△CAB,
此时,符合条件,点P和点O重合,即:P(0,0);
如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,
∴,
∴,
∴AN=,
过点N作NH⊥OA,
∴NH∥OA,
∴△ANH∽△ACO,
∴,
∴,
∴NH=,AH=,
∴OH=,
∴N(),
而点P1与点O关于AC对称,
∴P1(),
同理:点B关于AC的对称点P1,
同上的方法得,P1(﹣).
综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).
【点睛】
本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.
2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析: 这是一份2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,是一元二次方程的是,在平面直角坐标系中,将点P等内容,欢迎下载使用。
2022届山东省费县梁邱一中重点达标名校中考数学适应性模拟试题含解析: 这是一份2022届山东省费县梁邱一中重点达标名校中考数学适应性模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果为,一组数据等内容,欢迎下载使用。
2022届山东省烟台市、龙口市重点达标名校中考数学四模试卷含解析: 这是一份2022届山东省烟台市、龙口市重点达标名校中考数学四模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。