2022年江西省信丰县重点中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
2.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
根据上述信息,下列结论中错误的是( )
A.2017年第二季度环比有所提高
B.2017年第三季度环比有所提高
C.2018年第一季度同比有所提高
D.2018年第四季度同比有所提高
3.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=( )
A.6 B.8 C.10 D.12
4.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
A.1+ B.1+
C.2sin20°+ D.
5.下列说法正确的是( )
A.某工厂质检员检测某批灯泡的使用寿命采用普查法
B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
C.12名同学中有两人的出生月份相同是必然事件
D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
6.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )
A.3 B.4﹣ C.4 D.6﹣2
7.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是
A. B. C. D.
8.已知3x+y=6,则xy的最大值为( )
A.2 B.3 C.4 D.6
9.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A. B. C. D.
10.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算(+)(-)的结果等于________.
12.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.
13.按照一定规律排列依次为,…..按此规律,这列数中的第100个数是_____.
14.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.
15.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.
16.已知m=,n=,那么2016m﹣n=_____.
三、解答题(共8题,共72分)
17.(8分)计算:2cos30°+--()-2
18.(8分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.
请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
19.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.
(1)当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
20.(8分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.
21.(8分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)
22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
23.(12分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
24.将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.
从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
2、C
【解析】
根据环比和同比的比较方法,验证每一个选项即可.
【详解】
2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
故选C.
【点睛】
本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
3、C
【解析】
试题分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.
解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,
∴x1+x2=2,x1•x2=﹣3,
∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=1.
故选C.
4、A
【解析】
连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
【详解】
连接OT、OC,
∵PT切⊙O于点T,
∴∠OTP=90°,
∵∠P=20°,
∴∠POT=70°,
∵M是OP的中点,
∴TM=OM=PM,
∴∠MTO=∠POT=70°,
∵OT=OC,
∴∠MTO=∠OCT=70°,
∴∠OCT=180°-2×70°=40°,
∴∠COM=30°,
作CH⊥AP,垂足为H,则CH=OC=1,
S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
故选A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
5、B
【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
【详解】
A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
故答案选B.
【点睛】
本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
6、B
【解析】
分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
详解:如图,当点E旋转至y轴上时DE最小;
∵△ABC是等边三角形,D为BC的中点,
∴AD⊥BC
∵AB=BC=2
∴AD=AB•sin∠B=,
∵正六边形的边长等于其半径,正六边形的边长为2,
∴OE=OE′=2
∵点A的坐标为(0,6)
∴OA=6
∴DE′=OA-AD-OE′=4-
故选B.
点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
7、C
【解析】
根据主视图的定义判断即可.
【详解】
解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.
故选:.
【点睛】
此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.
8、B
【解析】
根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.
【详解】
解:∵1x+y=6,
∴y=-1x+6,
∴xy=-1x2+6x=-1(x-1)2+1.
∵(x-1)2≥0,
∴-1(x-1)2+1≤1,即xy的最大值为1.
故选B.
【点睛】
考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.
9、D
【解析】
延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
【详解】
解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选D.
【点睛】
此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
10、D
【解析】
解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
利用平方差公式进行计算即可得.
【详解】
原式=
=5-3=2,
故答案为:2.
【点睛】
本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.
12、40
【解析】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,
根据题意得:,
解得:.
答:A型号的计算器的每只进价为40元.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
13、
【解析】
根据按一定规律排列的一列数依次为…,可得第n个数为,据此可得第100个数.
【详解】
由题意,数列可改写成,…,
则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,
∴第n个数为=,
∴这列数中的第100个数为=;
故答案为:.
【点睛】
本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.
14、27π
【解析】
试题分析:设扇形的半径为r.则,解得r=9,∴扇形的面积==27π.故答案为27π.
考点:扇形面积的计算.
15、
【解析】
利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可
【详解】
∵圆锥的底面圆的周长是,
∴圆锥的侧面扇形的弧长为 cm,
,
解得:
故答案为.
【点睛】
此题考查弧长的计算,解题关键在于求得圆锥的侧面积
16、1
【解析】
根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.
【详解】
解:∵m===,
∴m=n,
∴2016m-n=20160=1.
故答案为:1
【点睛】
本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.
三、解答题(共8题,共72分)
17、5
【解析】
根据实数的计算,先把各数化简,再进行合并即可.
【详解】
原式=
=5
【点睛】
此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.
18、200名;见解析;;(4)375.
【解析】
根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
【详解】
解:,
答:此次抽样调查中,共调查了200名学生;
反对的人数为:,
补全的条形统计图如右图所示;
扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
(4),
答:该校1500名学生中有375名学生持“无所谓”意见.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
19、(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.
【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),进而得出A(1-t,+t),即:(1-t)(+t)=m,即可得出点D(1,8-),即可得出结论.
详解:(1)①如图1,
∵m=1,
∴反比例函数为y=,当x=1时,y=1,
∴B(1,1),
当y=2时,
∴2=,
∴x=2,
∴A(2,2),
设直线AB的解析式为y=kx+b,
∴,
∴,
∴直线AB的解析式为y=-x+3;
②四边形ABCD是菱形,
理由如下:如图2,
由①知,B(1,1),
∵BD∥y轴,
∴D(1,5),
∵点P是线段BD的中点,
∴P(1,3),
当y=3时,由y=得,x=,
由y=得,x=,
∴PA=1-=,PC=-1=,
∴PA=PC,
∵PB=PD,
∴四边形ABCD为平行四边形,
∵BD⊥AC,
∴四边形ABCD是菱形;
(2)四边形ABCD能是正方形,
理由:当四边形ABCD是正方形,
∴PA=PB=PC=PD,(设为t,t≠0),
当x=1时,y==,
∴B(1,),
∴A(1-t,+t),
∴(1-t)(+t)=m,
∴t=1-,
∴点D的纵坐标为+2t=+2(1-)=8-,
∴D(1,8-),
∴1(8-)=n,
∴m+n=2.
点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
20、证明见解析.
【解析】
试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
考点:1.全等三角形的判定与性质;2.平行四边形的性质.
21、1.9米
【解析】
试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.
试题解析:∵∠BDC=90°,BC=10,sinB=, ∴CD=BC•sinB=10×0.2=5.9,
∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°, ∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,
∴在Rt△ACD中,tan∠ACD=, ∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),
则改建后南屋面边沿增加部分AD的长约为1.9米.
考点:解直角三角形的应用
22、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
23、 (1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.
【解析】
【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;
(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;
(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.
【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥,
∵y=﹣100x+50000中k=﹣100<0,
∴y随x的增大而减小,
∵x为正数,
∴x=34时,y取得最大值,最大值为46600,
答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;
(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
33≤x≤60,
①当0<a<100时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②a=100时,a﹣100=0,y=50000,
即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;
③当100<a<200时,a﹣100>0,y随x的增大而增大,
∴当x=60时,y取得最大值.
即商店购进60台A型电脑和40台B型电脑的销售利润最大.
【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.
24、 (1);(2).
【解析】
(1)直接利用概率公式求解即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.
【详解】
(1) 从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,
∴P(牌面是偶数)==;
故答案为:;
(2)根据题意,画树状图:
可知,共有种等可能的结果,其中恰好是的倍数的共有种,
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
2022年安康市重点中学中考押题数学预测卷含解析: 这是一份2022年安康市重点中学中考押题数学预测卷含解析,共22页。试卷主要包含了已知,则的值为,下列判断正确的是等内容,欢迎下载使用。
2022年德宏市重点中学中考押题数学预测卷含解析: 这是一份2022年德宏市重点中学中考押题数学预测卷含解析,共23页。试卷主要包含了下列运算正确的是,计算4×的结果等于,下列命题是真命题的是,cs30°=等内容,欢迎下载使用。
2022年阳泉市重点中学中考押题数学预测卷含解析: 这是一份2022年阳泉市重点中学中考押题数学预测卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,﹣2018的相反数是,下列计算正确的是等内容,欢迎下载使用。