|试卷下载
搜索
    上传资料 赚现金
    2022年江西省南昌市进贤县中考押题数学预测卷含解析
    立即下载
    加入资料篮
    2022年江西省南昌市进贤县中考押题数学预测卷含解析01
    2022年江西省南昌市进贤县中考押题数学预测卷含解析02
    2022年江西省南昌市进贤县中考押题数学预测卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江西省南昌市进贤县中考押题数学预测卷含解析

    展开
    这是一份2022年江西省南昌市进贤县中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是(   )
    A.M>N B.M=N C.M 2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
    A.120元 B.100元 C.80元 D.60元
    3.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )

    A.6 B.5 C.4 D.
    4.如图,是的外接圆,已知,则的大小为  

    A. B. C. D.
    5.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
    A.5 B.7 C.8 D.10
    6.如果菱形的一边长是8,那么它的周长是(  )
    A.16 B.32 C.16 D.32
    7.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )
    A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106
    8.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是(  )
    A. B. C. D.
    9.等腰三角形底角与顶角之间的函数关系是(  )
    A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
    10.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是  
    A. B. C. D.
    11.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    12.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值(  )
    A.总不小于1 B.总不小于11
    C.可为任何实数 D.可能为负数
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.

    14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.

    15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .

    16.因式分解:y3﹣16y=_____.
    17.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=BD,若四边形AECF为正方形,则tan∠ABE=_____.

    18.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.
    (1)求;(直接写出结果)
    (2)当AB=3,AC=5时,求的周长.

    20.(6分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
    21.(6分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.

    22.(8分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.

    (1)“抛物线三角形”一定是 三角形;
    (2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;
    (3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.
    23.(8分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.
    如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.
    24.(10分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
    (1)求证:四边形ABCD是菱形;
    (2)若∠EAF=60°,CF=2,求AF的长.

    25.(10分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   °;
    (2)请补全条形统计图;
    (3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
    26.(12分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AB=BE=2,sin∠ACD= ,求四边形ABCD的面积.

    27.(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
    (1)求A种,B种树木每棵各多少元;
    (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    若比较M,N的大小关系,只需计算M-N的值即可.
    【详解】
    解:∵M=9x2-4x+3,N=5x2+4x-2,
    ∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,
    ∴M>N.
    故选A.
    【点睛】
    本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.
    2、C
    【解析】
    解:设该商品的进价为x元/件,
    依题意得:(x+20)÷=200,解得:x=1.
    ∴该商品的进价为1元/件.
    故选C.
    3、D
    【解析】
    根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
    【详解】
    ∵ED是BC的垂直平分线,
    ∴DB=DC,
    ∴∠C=∠DBC,
    ∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBC,
    ∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
    ∴∠C=∠DBC=∠ABD=30°,
    ∴BD=2AD=6,
    ∴CD=6,
    ∴CE =3,
    故选D.
    【点睛】
    本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.
    4、A
    【解析】
    解:△AOB中,OA=OB,∠ABO=30°;
    ∴∠AOB=180°-2∠ABO=120°;
    ∴∠ACB=∠AOB=60°;故选A.
    5、A
    【解析】
    解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
    6、B
    【解析】
    根据菱形的四边相等,可得周长
    【详解】
    菱形的四边相等
    ∴菱形的周长=4×8=32
    故选B.
    【点睛】
    本题考查了菱形的性质,并灵活掌握及运用菱形的性质
    7、C
    【解析】
    解:,故选C.
    8、D
    【解析】
    画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
    【详解】
    画树状图如下:

    一共有20种情况,其中两个球中至少有一个红球的有14种情况,
    因此两个球中至少有一个红球的概率是:.
    故选:D.
    【点睛】
    此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    9、B
    【解析】
    根据一次函数的定义,可得答案.
    【详解】
    设等腰三角形的底角为y,顶角为x,由题意,得
    x+2y=180,
    所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,
    故选B.
    【点睛】
    本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.
    10、B
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.
    【详解】
    解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;
    B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
    C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
    D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.
    故选:B.
    【点睛】
    本题重点考查三视图的定义以及考查学生的空间想象能力.
    11、A
    【解析】
    直接利用已知无理数得出的取值范围,进而得出答案.
    【详解】
    解:∵1<<2,
    ∴1-2<﹣2<2-2,
    ∴-1<﹣2<0
    即-2在-1和0之间.
    故选A.
    【点睛】
    此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
    12、A
    【解析】
    利用配方法,根据非负数的性质即可解决问题;
    【详解】
    解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
    又∵(x+3)2≥0,(2y-1)2≥0,
    ∴x2+4y2+6x-4y+11≥1,
    故选:A.
    【点睛】
    本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、60°
    【解析】
    解:∵BD是⊙O的直径,
    ∴∠BCD=90°(直径所对的圆周角是直角),
    ∵∠CBD=30°,
    ∴∠D=60°(直角三角形的两个锐角互余),
    ∴∠A=∠D=60°(同弧所对的圆周角相等);
    故答案是:60°
    14、0.7
    【解析】
    用通话时间不足10分钟的通话次数除以通话的总次数即可得.
    【详解】
    由图可知:小明家3月份通话总次数为20+15+10+5=50(次);
    其中通话不足10分钟的次数为20+15=35(次),
    ∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.
    故答案为0.7.
    15、1或.
    【解析】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如答图1所示.
    连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
    【详解】
    当△CEB′为直角三角形时,有两种情况:

    ①当点B′落在矩形内部时,如答图1所示.
    连结AC,
    在Rt△ABC中,AB=1,BC=4,
    ∴AC==5,
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
    ∴EB=EB′,AB=AB′=1,
    ∴CB′=5-1=2,
    设BE=x,则EB′=x,CE=4-x,
    在Rt△CEB′中,
    ∵EB′2+CB′2=CE2,
    ∴x2+22=(4-x)2,解得,
    ∴BE=;
    ②当点B′落在AD边上时,如答图2所示.
    此时ABEB′为正方形,∴BE=AB=1.
    综上所述,BE的长为或1.
    故答案为:或1.
    16、y(y+4)(y﹣4)
    【解析】
    试题解析:原式


    故答案为
    点睛:提取公因式法和公式法相结合因式分解.
    17、
    【解析】
    利用正方形对角线相等且互相平分,得出EO=AO=BE,进而得出答案.
    【详解】

    解:∵四边形AECF为正方形,
    ∴EF与AC相等且互相平分,
    ∴∠AOB=90°,AO=EO=FO,
    ∵BE=DF=BD,
    ∴BE=EF=FD,
    ∴EO=AO=BE,
    ∴tan∠ABE= = .
    故答案为:
    【点睛】
    此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=BE是解题关键.
    18、270
    【解析】
    根据三角形的内角和与平角定义可求解.
    【详解】
    解析:如图,根据题意可知∠5=90°,
    ∴ ∠3+∠4=90°,
    ∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.

    【点睛】
    本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)∠ADE=90°;
    (2)△ABE的周长=1.
    【解析】
    试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°
    (2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以△ABE的周长为AB+BE+AE=AB+BC=1
    试题解析:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;
    (2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,
    ∵MN是线段AC的垂直平分线,∴AE=CE,
    ∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=1.
    考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长
    20、(1),;(2)点的坐标为;(3)点的坐标为和
    【解析】
    (1)根据二次函数的对称轴公式,抛物线上的点代入,即可;
    (2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
    【详解】
    解:(1)轴,,抛物线对称轴为直线
    点的坐标为
    解得或(舍去),
    (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.
    直线经过点利用待定系数法可得直线的表达式为.
    因为点在上,即点的坐标为
    (3)存在点满足题意.设点坐标为,则
    作垂足为
    ①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为
    ②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为
    综上所述:满足题意得点的坐标为和
    考点:二次函数的综合运用.
    21、证明见解析.
    【解析】
    试题分析:作于点F,然后证明≌ ,从而求出所所以BM与CN的长度相等.
    试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,
    则有AB=AE=EF=FC,

    ∴∠AEM=∠FEN,
    在Rt△AME和Rt△FNE中,
    ∵E为AB的中点,
    ∴AB=CF,
    ∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,
    ∴Rt△AME≌Rt△FNE,
    ∴AM=FN,
    ∴MB=CN.

    22、(1)等腰(2)(3)存在,
    【解析】解:(1)等腰
    (2)∵抛物线的“抛物线三角形”是等腰直角三角形,
    ∴该抛物线的顶点满足.
    ∴.
    (3)存在.
    如图,作△与△关于原点中心对称,

    则四边形为平行四边形.
    当时,平行四边形为矩形.
    又∵,
    ∴△为等边三角形.
    作,垂足为.
    ∴.
    ∴.
    ∴.
    ∴,.
    ∴,.
    设过点三点的抛物线,则
    解之,得
    ∴所求抛物线的表达式为.
    23、 (1)证明见解析;(2)证明见解析;(3)CE=.
    【解析】
    (1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.
    (2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.
    (3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.
    【详解】
    解:(1)如图1所示,连接OB,

    ∵∠A=60°,OA=OB,
    ∴△AOB为等边三角形,
    ∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,
    ∵△DBE为等边三角形,
    ∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,
    ∴∠ABD=∠OBE,
    ∴△ADB≌△OBE(SAS),
    ∴OE=AD;
    (2)如图2所示,

    由(1)可知△ADB≌△OBE,
    ∴∠BOE=∠A=60°,∠ABD=∠OBE,
    ∵∠BOA=60°,
    ∴∠EOC=∠BOE =60°,
    又∵OB=OC,OE=OE,
    ∴△BOE≌△COE(SAS),
    ∴∠OCE=∠OBE,
    ∴∠OCE=∠ABD;
    (3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,

    ∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,
    ∴△ADB≌△MQD(ASA),
    ∴AB=MQ,
    ∵∠A=60°,∠ABC=90°,
    ∴∠ACB=30°,
    ∴AB==AO=CO=OG,
    ∴MQ=OG,
    ∵AB∥GO,
    ∴MQ∥GO,
    ∴四边形MQOG为平行四边形,
    设AD为x,则OE=x,OF=2x,
    ∵OD=3,
    ∴OA=OG=3+x,GF=3﹣x,
    ∵DQ=AD=x,
    ∴OQ=MG=3﹣x,
    ∴MG=GF,
    ∵∠DOG=60°,
    ∴∠MGF=120°,
    ∴∠GMF=∠GFM=30°,
    ∵∠QMD=∠ABD=∠ODE,∠ODN=30°,
    ∴∠DMF=∠EDN,
    ∵OD=3,
    ∴ON=,DN=,
    ∵tan∠BMF=,
    ∴tan∠NDE=,
    ∴ ,
    解得x=1,
    ∴NE=,
    ∴DE=,
    ∴CE=.
    故答案为(1)证明见解析;(2)证明见解析;(3)CE=.
    【点睛】
    本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.
    24、 (1)见解析;(2)2
    【解析】
    (1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;
    方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;
    (2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.
    【详解】
    (1)证法一:连接AC,如图.

    ∵AE⊥BC,AF⊥DC,AE=AF,
    ∴∠ACF=∠ACE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠DAC=∠ACB.
    ∴∠DAC=∠DCA,
    ∴DA=DC,
    ∴四边形ABCD是菱形.
    证法二:如图,

    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D.
    ∵AE⊥BC,AF⊥DC,
    ∴∠AEB=∠AFD=90°,
    又∵AE=AF,
    ∴△AEB≌△AFD.
    ∴AB=AD,
    ∴四边形ABCD是菱形.
    (2)连接AC,如图.

    ∵AE⊥BC,AF⊥DC,∠EAF=60°,
    ∴∠ECF=120°,
    ∵四边形ABCD是菱形,
    ∴∠ACF=60°,
    在Rt△CFA中,AF=CF•tan∠ACF=2.
    【点睛】
    本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
    25、(1)60,1°.(2)补图见解析;(3)
    【解析】
    (1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;
    (2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;
    (3)根据题意先画出树状图,再根据概率公式即可得出答案.
    【详解】
    (1)接受问卷调查的学生共有30÷50%=60(人),
    扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=1°,
    故答案为60,1.
    (2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:

    (3)画树状图得:

    ​∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
    ∴恰好抽到1个男生和1个女生的概率为=.
    【点睛】
    此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.
    26、(1)证明见解析;(2)S平行四边形ABCD =3 .
    【解析】
    试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;
    (2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积.
    试题解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,
    ∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,
    ∵AB∥CD,∴四边形ABCD是平行四边形;
    (2)∵sin∠ACD=,∴∠ACD=60°,
    ∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,
    ∵AB=BE=2,∴△ABE是等边三角形,∴AE=AB=2,
    ∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE= CD=1,∴DE=CE=,AC=AE+CE=3,
    ∴S平行四边形ABCD =2S△ACD =AC•DE=3.
    27、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.
    【解析】
    (1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;
    (2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.
    【详解】
    解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得
    ,解得 ,
    答:A种树木每棵2元,B种树木每棵80元.
    (2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.
    又2-x≥0,解得x≤2.∴1≤x≤2.
    设实际付款总额是y元,则y=0.9[2x+80(2-x)].
    即y=18x+7 3.
    ∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+7 3=8 550(元).
    答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元.

    相关试卷

    2022年江西省信丰县重点中学中考押题数学预测卷含解析: 这是一份2022年江西省信丰县重点中学中考押题数学预测卷含解析,共19页。试卷主要包含了答题时请按要求用笔,有个零件如图放置,它的主视图是等内容,欢迎下载使用。

    2022届江西省鄱阳县达标名校中考押题数学预测卷含解析: 这是一份2022届江西省鄱阳县达标名校中考押题数学预测卷含解析,共22页。

    2021-2022学年江西省南昌市新建区中考数学押题卷含解析: 这是一份2021-2022学年江西省南昌市新建区中考数学押题卷含解析,共25页。试卷主要包含了学校小组名同学的身高,的一个有理化因式是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map