2022年辽宁省法库县中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )
A.(5,5) B.(5,4) C.(6,4) D.(6,5)
2.这个数是( )
A.整数 B.分数 C.有理数 D.无理数
3.下列图形中既是中心对称图形又是轴对称图形的是
A. B. C. D.
4.函数的图象上有两点,,若,则( )
A. B. C. D.、的大小不确定
5.已知函数的图象与x轴有交点.则的取值范围是( )
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
6.的相反数是 ( )
A.6 B.-6 C. D.
7.下列命题是真命题的是( )
A.过一点有且只有一条直线与已知直线平行
B.对角线相等且互相垂直的四边形是正方形
C.平分弦的直径垂直于弦,并且平分弦所对的弧
D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形
8.的相反数是( )
A. B.- C. D.-
9.下列命题中,真命题是( )
A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离
B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切
C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切
D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离
10.若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )
A.1,2,3 B.1,2 C.1,3 D.2,3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式a3﹣6a2+9a=_________________.
12.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.
13.函数y=+中,自变量x的取值范围是_____.
14.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.
15.分解因式:m2n﹣2mn+n= .
16.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2; ⑤3a+c<1.其中,正确结论的序号是________________.
三、解答题(共8题,共72分)
17.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.
(1)求反比例函数和一次函数的解析式;
(2)请连结,并求出的面积;
(3)直接写出当时,的解集.
18.(8分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
19.(8分)已知.化简;如果、是方程的两个根,求的值.
20.(8分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
21.(8分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
(1)求证:CD与⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
22.(10分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).
请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是 人,并将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有 人达标;
(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
23.(12分) (1)计算:(a-b)2-a(a-2b);
(2)解方程:=.
24.如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈,cos76°≈,tan 76°≈4,sin53°≈,tan53°≈)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.
【详解】
解:∵四边形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y轴,AD∥BC∥x轴
∴点D坐标为(5,4)
故选B.
【点睛】
本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.
2、D
【解析】
由于圆周率π是一个无限不循环的小数,由此即可求解.
【详解】
解:实数π是一个无限不循环的小数.所以是无理数.
故选D.
【点睛】
本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
3、B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.
【详解】
A、是轴对称图形,不是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、不是轴对称图形,是中心对称图形,不符合题意.
故选B.
4、A
【解析】
根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.
【详解】
解:∵y=-1x1-8x+m,
∴此函数的对称轴为:x=-=-=-1,
∵x1<x1<-1,两点都在对称轴左侧,a<0,
∴对称轴左侧y随x的增大而增大,
∴y1<y1.
故选A.
【点睛】
此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.
5、B
【解析】
试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
考点:函数图像与x轴交点的特点.
6、D
【解析】
根据相反数的定义解答即可.
【详解】
根据相反数的定义有:的相反数是.
故选D.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
7、D
【解析】
根据真假命题的定义及有关性质逐项判断即可.
【详解】
A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;
B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;
C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;
D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.
故选D.
【点睛】
本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.
8、B
【解析】
∵+(﹣)=0,
∴的相反数是﹣.
故选B.
9、D
【解析】
根据两圆的位置关系、直线和圆的位置关系判断即可.
【详解】
A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;
B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;
C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;
D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;
故选:D.
【点睛】
本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.
10、C
【解析】
试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,
已知关于x的分式方的解为正数,得m=1,m=3,故选C.
考点:分式方程的解.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a(a﹣3)1 .
【解析】
a3﹣6a1+9a
=a(a1﹣6a+9)
=a(a﹣3)1.
故答案为a(a﹣3)1.
12、
【解析】
第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.
【详解】
解:∵菱形ABCD中,AB=4,∠C=60°,
∴△ABD是等边三角形, BO=DO=2,
AO==,
第一次旋转的弧长=,
∵第一、二次旋转的弧长和=+=,
第三次旋转的弧长为:,
故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=.
故答案为:.
【点睛】
本题考查菱形的性质,翻转的性质以及解直角三角形的知识.
13、x≥﹣2且x≠1
【解析】
分析:
根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
详解:
∵有意义,
∴ ,解得:且.
故答案为:且.
点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
14、140°
【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,
∴EF是△ABD的中位线,
∴EF∥BD,BD=2EF=12,
∴∠ADB=∠AFE=50°,
∵BC=15,CD=9,BD=12,
∴BC2=225,CD2=81,BD2=144,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
故答案为:140°.
15、n(m﹣1)1.
【解析】
先提取公因式n后,再利用完全平方公式分解即可
【详解】
m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.
故答案为n(m﹣1)1.
16、②③④⑤
【解析】
试题解析:∵二次函数与x轴有两个交点,
∴b2-4ac>1,故①错误,
观察图象可知:当x>-1时,y随x增大而减小,故②正确,
∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,
∴x=1时,y=a+b+c<1,故③正确,
∵当m>2时,抛物线与直线y=m没有交点,
∴方程ax2+bx+c-m=1没有实数根,故④正确,
∵对称轴x=-1=-,
∴b=2a,
∵a+b+c<1,
∴3a+c<1,故⑤正确,
故答案为②③④⑤.
三、解答题(共8题,共72分)
17、(1),;(2)4;(3).
【解析】
(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
(2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
(3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
【详解】
解:(1)如图,连接,,
∵⊙C与轴,轴相切于点D,,且半径为,
,,
∴四边形是正方形,
,
,点,
把点代入反比例函数中,
解得:,
∴反比例函数解析式为:,
∵点在反比例函数上,
把代入中,可得,
,
把点和分别代入一次函数中,
得出:,
解得:,
∴一次函数的表达式为:;
(2)如图,连接,
,点的横坐标为,
的面积为:;
(3)由,根据图象可知:当时,的解集为:.
【点睛】
本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
18、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【解析】
(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证∽即可得;
(3)证∽得,设,知,由得、、,由可得a的值.
【详解】
(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
【点睛】
本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
19、 (1) ;(2)-4.
【解析】
(1)先通分,再进行同分母的减法运算,然后约分得到原式
(2)利用根与系数的关系得到 然后利用整体代入的方法计算.
【详解】
解:(1)
.
(2)∵、是方程,
∴,
∴
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时,, 也考查了分式的加减法.
20、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
【解析】
(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
【详解】
(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
根据题意得:
方程两边同乘以,得
解得:
经检验,是原方程的解.
∴当时,.
答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
方案一:由甲工程队单独完成.所需费用为:(万元);
方案二:由乙工程队单独完成.所需费用为:(万元);
方案三:由甲乙两队合作完成.所需费用为:(万元).
∵∴应该选择甲工程队承包该项工程.
【点睛】
本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
21、(1)证明见解析;(2)
【解析】
试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
(2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
试题解析:
(1)证明:
过点O作OG⊥DC,垂足为G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中
,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切线.
(2)如图所示:连接OF.
∵OA⊥BC,
∴BE=EF= BF=1.
在Rt△OEF中,OE=5,EF=1,
∴OF=,
∴AE=OA+OE=13+5=2.
∴tan∠ABC=.
【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.
22、(1)120,补图见解析;(2)96;(3)960人.
【解析】
(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;
(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;
(3)求出达标占的百分比,乘以1200即可得到结果.
【详解】
(1)根据题意得:24÷20%=120(人),
则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为×100%=30%,
补全统计图,如图所示:
(2)根据题意得:36+60=96(人),
则达标的人数为96人;
(3)根据题意得:×1200=960(人),
则全校达标的学生有960人.
故答案为(1)120;(2)96人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、 (1) b2 (2)1
【解析】
分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.
详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;
(2) 解:, 解得:x=1,
经检验 x=1为原方程的根, 所以原方程的解为x=1.
点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.
24、工作人员家到检查站的距离AC的长约为km.
【解析】
分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=,BH=BC•cos∠CBH=.再解Rt△BAH中,求出AH=BH•tan∠ABH=,那么根据AC=CH-AH计算即可.
详解:如图,过点B作BH⊥l交l于点H,
∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,
∴CH=BC•sin∠CBH≈,
BH=BC•cos∠CBH≈.
∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,
∴AH=BH•tan∠ABH≈,
∴AC=CH﹣AH=(km).
答:工作人员家到检查站的距离AC的长约为km.
点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
2022届辽宁省铁岭市名校中考猜题数学试卷含解析: 这是一份2022届辽宁省铁岭市名校中考猜题数学试卷含解析,共20页。试卷主要包含了如图所示,-5的倒数是,4的平方根是等内容,欢迎下载使用。
2022届辽宁省大连市高新区中考猜题数学试卷含解析: 这是一份2022届辽宁省大连市高新区中考猜题数学试卷含解析,共17页。
2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析,共23页。