![2022年辽宁大连甘井子区育文中学初中数学毕业考试模拟冲刺卷含解析01](http://img-preview.51jiaoxi.com/2/3/13354411/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年辽宁大连甘井子区育文中学初中数学毕业考试模拟冲刺卷含解析02](http://img-preview.51jiaoxi.com/2/3/13354411/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年辽宁大连甘井子区育文中学初中数学毕业考试模拟冲刺卷含解析03](http://img-preview.51jiaoxi.com/2/3/13354411/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年辽宁大连甘井子区育文中学初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
2.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A.①②③④ B.①④ C.②③④ D.①②③
3.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )
A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
4.把不等式组的解集表示在数轴上,下列选项正确的是( )
A. B.
C. D.
5.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )
A.200米 B.200米 C.220米 D.100米
6.下列运算正确的是( )
A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(+)2=5
7.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
A.45° B.60° C.70° D.90°
8.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
A.16 B.12 C.24 D.18
9.等腰三角形的一个外角是100°,则它的顶角的度数为( )
A.80° B.80°或50° C.20° D.80°或20°
10.按如图所示的方法折纸,下面结论正确的个数( )
①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.
A.1 个 B.2 个 C.1 个 D.4 个
二、填空题(共7小题,每小题3分,满分21分)
11.因式分解:(a+1)(a﹣1)﹣2a+2=_____.
12.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.
13.如图,在矩形ABCD中,AD=5,AB=4,E是BC上的一点,BE=3,DF⊥AE,垂足为F,则tan∠FDC=_____.
14.已知a,b为两个连续的整数,且a<<b,则ba=_____.
15.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.
16.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.
17.当x=_________时,分式的值为零.
三、解答题(共7小题,满分69分)
18.(10分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
表1:甲调查九年级30位同学植树情况
每人植树棵数
7
8
9
10
人数
3
6
15
6
表2:乙调查三个年级各10位同学植树情况
每人植树棵数
6
7
8
9
10
人数
3
6
3
12
6
根据以上材料回答下列问题:
(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;
(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
19.(5分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是_____度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
20.(8分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.
(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.
(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?
(3)请你求出学校在第二次购买活动中最多需要多少资金?
21.(10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
22.(10分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.
23.(12分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.
24.(14分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.
(1)若a=1,求反比例函数的解析式及b的值;
(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
(3)若a﹣b=4,求一次函数的函数解析式.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
解:3400000=.
故选B.
2、D
【解析】
∵在▱ABCD中,AO=AC,
∵点E是OA的中点,
∴AE=CE,
∵AD∥BC,
∴△AFE∽△CBE,
∴=,
∵AD=BC,
∴AF=AD,
∴;故①正确;
∵S△AEF=4, =()2=,
∴S△BCE=36;故②正确;
∵ =,
∴=,
∴S△ABE=12,故③正确;
∵BF不平行于CD,
∴△AEF与△ADC只有一个角相等,
∴△AEF与△ACD不一定相似,故④错误,故选D.
3、B
【解析】
令x=0,y=6,∴B(0,6),
∵等腰△OBC,∴点C在线段OB的垂直平分线上,
∴设C(a,3),则C '(a-5,3),
∴3=3(a-5)+6,解得a=4,
∴C(4,3).
故选B.
点睛:掌握等腰三角形的性质、函数图像的平移.
4、C
【解析】
求得不等式组的解集为x<﹣1,所以C是正确的.
【详解】
解:不等式组的解集为x<﹣1.
故选C.
【点睛】
本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
5、D
【解析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【详解】
∵在热气球C处测得地面B点的俯角分别为45°,
∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°,
∴AC=2×100=200米,
∴AD==100米,
∴AB=AD+BD=100+100=100(1+)米,
故选D.
【点睛】
本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
6、B
【解析】
利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.
【详解】
解:A、a2与a3不能合并,所以A选项错误;
B、原式=a6÷a6=1,所以A选项正确;
C、原式=a5,所以C选项错误;
D、原式=2+2+3=5+2,所以D选项错误.
故选:B.
【点睛】
本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
7、D
【解析】
已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.
8、A
【解析】
由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.
【详解】
解:∵四边形ABCD是菱形,∴AB=BC.
∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.
故选A.
【点睛】
本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
9、D
【解析】
根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.
【详解】
∵等腰三角形的一个外角是100°,
∴与这个外角相邻的内角为180°−100°=80°,
当80°为底角时,顶角为180°-160°=20°,
∴该等腰三角形的顶角是80°或20°.
故答案选:D.
【点睛】
本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.
10、C
【解析】
∵∠1+∠1=∠2,∠1+∠1+∠2=180°,
∴∠1+∠1=∠2=90°,故①正确;
∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;
∵∠1+∠1=90°,∠1+∠BAE=90°,
∴∠1=∠BAE,
又∵∠B=∠C,
∴△ABE∽△ECF.故③,④正确;
故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、(a﹣1)1.
【解析】
提取公因式(a−1),进而分解因式得出答案.
【详解】
解:(a+1)(a﹣1)﹣1a+1
=(a+1)(a﹣1)﹣1(a﹣1)
=(a﹣1)(a+1﹣1)
=(a﹣1)1.
故答案为:(a﹣1)1.
【点睛】
此题主要考查了提取公因式法分解因式,找出公因式是解题关键.
12、
【解析】
由题中所给条件证明△ADF△ACG,可求出的值.
【详解】
解:在△ADF和△ACG中,
AB=6,AC=5,D是边AB的中点
AG是∠BAC的平分线,
∴∠DAF=∠CAG
∠ADE=∠C
∴△ADF△ACG
∴.
故答案为.
【点睛】
本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.
13、
【解析】
首先根据矩形的性质以及垂线的性质得到∠FDC=∠ABE,进而得出tan∠FDC=tan∠AEB=,即可得出答案.
【详解】
∵DF⊥AE,垂足为F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=,∵在矩形ABCD中,AB=4,E是BC上的一点,BE=3,∴tan∠FDC=.故答案为.
【点睛】
本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tan∠FDC=tan∠AEB是解题关键.
14、1
【解析】
根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.
【详解】
解:∵a,b为两个连续的整数,且a<<b,
∴a=2,b=3,
∴ba=32=1.
故答案为1.
【点睛】
此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,
15、①②③④
【解析】
①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN;
②由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN,
∴MP=AH=AC=BD;
③∵∠BAN+∠QAD=∠NAQ=45°,
∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ;
④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴.
故答案为:①②③④
点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.
16、k<1
【解析】
根据一元二次方程根的判别式结合题意进行分析解答即可.
【详解】
∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,
∴△=,
解得:.
故答案为:.
【点睛】
熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.
17、2
【解析】
根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算
即可.
【详解】
解:依题意得:2﹣x=1且2x+2≠1.
解得x=2,
故答案为2.
【点睛】
本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)9,9;(2)乙;(3)1680棵;
【解析】
(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
【详解】
(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
故答案为:9,9;
(2)乙同学所抽取的样本能更好反映此次植树活动情况;
故答案为:乙;
(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
答:本次活动200位同学一共植树1680棵.
【点睛】
本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
19、(1)117;(2)答案见图;(3)B;(4)30.
【解析】
(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.
【详解】
(1)∵总人数为18÷45%=40人,
∴C等级人数为40﹣(4+18+5)=13人,
则C对应的扇形的圆心角是360°×=117°,
故答案为:117;
(2)补全条形图如下:
(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,
所以所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案为:B.
(4)估计足球运球测试成绩达到A级的学生有300×=30人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
20、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元.
【解析】
试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50-m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.
试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元
,解得
(2) 设第二次购买A种足球m个,则购买B种足球(50-m)个
,解得25≤m≤27
∵m为整数 ∴m=25、26、27
(3) ∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72
∴当购买B种足球越多时,费用越高 此时25×54+25×72=3150(元)
21、(1)2400元;(2)8台.
【解析】
试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.
试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得
解得
经检验,是原方程的解.
答:第一次购入的空调每台进价是2 400元.
(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).
设第二次将y台空调打折出售,由题意,得
解得
答:最多可将8台空调打折出售.
22、见解析
【解析】
由BE=CF可得BC=EF,即可判定,再利用全等三角形的性质证明即可.
【详解】
∵BE=CF,
∴,
即BC=EF,
又∵AB=DE,∠B=∠DEF,
∴在与中,
,
∴,
∴AC=DF.
【点睛】
本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.
23、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
24、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
【解析】
(1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
【详解】
(1)若a=1,则A(1,4),
设反比例函数的解析式为y=(k≠0),
∵点A在反比例函数的图象上,
∴4=,
解得k=4,
∴反比例函数解析式为y=;
∵点B(﹣4,b)在反比例函数的图象上,
∴b==﹣1,
即反比例函数的解析式为y=,b的值为﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),
根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
∴,即,
①+②得4a﹣4b=1p,
∵a﹣b=4,
∴16=1p,
解得p=8,
把p=8代入①得4a=8,代入②得﹣4b=8,
解得a=1,b=﹣1,
∴A(1,4),B(﹣4,﹣1),
∵点A、点B在一次函数y=mx+n图象上,
∴
解得
∴一次函数的解析式为y=x+1.
【点睛】
本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
辽宁大连甘井子区育文中学2023-2024学年数学八上期末联考模拟试题含答案: 这是一份辽宁大连甘井子区育文中学2023-2024学年数学八上期末联考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数等内容,欢迎下载使用。
西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了定义,在直角坐标系中,已知点P,不等式组 的整数解有等内容,欢迎下载使用。