辽宁省抚顺县2022年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.x4•x4=x16 B.(a+b)2=a2+b2
C.=±4 D.(a6)2÷(a4)3=1
2.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为( )
A.6 B.8 C.10 D.12
3.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A. B. C.且 D.
4.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )
A.7 B.﹣7 C.1 D.﹣1
5.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是
A. B. C. D.
6.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
7.据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录.用科学记数法表示88000为( )
A.0.88×105 B.8.8×104 C.8.8×105 D.8.8×106
8.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
A.2﹣ B.1 C. D.﹣l
9.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
10.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为( )
A.(1+40%)×30%x B.(1+40%)(1﹣30%)x
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b)6= .
12.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.
13.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是________.
14.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
15.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.
16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.
三、解答题(共8题,共72分)
17.(8分)已知:如图,在矩形纸片ABCD中,,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF.
的长为多少;
求AE的长;
在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.
18.(8分)如图,在中,,为边上的中线,于点E.
求证:;若,,求线段的长.
19.(8分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.
20.(8分)综合与实践:
概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .
问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.
拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
21.(8分)如图,AB∥CD,∠1=∠2,求证:AM∥CN
22.(10分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
(2)求∠ABD的度数.
23.(12分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
(1)求证:CD与⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
24.解不等式组
请结合题意填空,完成本题的解答.
(I)解不等式(1),得 ;
(II)解不等式(2),得 ;
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
考点:1、幂的运算;2、完全平方公式;3、算术平方根.
2、B
【解析】
根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
【详解】
∵点A的坐标为(﹣3,﹣4),
∴OA==5,
∵四边形AOCB是菱形,
∴AB=OA=5,AB∥x轴,
∴B(﹣8,﹣4),
∵点E是菱形AOCB的中心,
∴E(﹣4,﹣2),
∴k=﹣4×(﹣2)=8,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
3、C
【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴ ,
解得:k<1且k≠1.
故选:C.
【点睛】
本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
4、C
【解析】
试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.
故选A.
考点:代数式的求值;整体思想.
5、C
【解析】
根据向下平移,纵坐标相减,即可得到答案.
【详解】
∵抛物线y=x2+2向下平移1个单位,
∴抛物线的解析式为y=x2+2-1,即y=x2+1.
故选C.
6、B
【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
【详解】
故选:B.
【点睛】
本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
7、B
【解析】
试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,
∵88000一共5位,∴88000=8.88×104. 故选B.
考点:科学记数法.
8、D
【解析】
∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
∴AD⊥BC,B′C′⊥AB,
∴AD=BC=1,AF=FC′=AC′=1,
∴DC′=AC′-AD=-1,
∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
故选D.
【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
9、C
【解析】
绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
【详解】
n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
【点睛】
本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.
10、D
【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
【详解】
由题意可得,
去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
故选:D.
【点睛】
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
【解析】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
【详解】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
12、2
【解析】
连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.
【详解】
连接OC,
∵PC是⊙O的切线,
∴OC⊥PC,
∴∠OCP=90°,
∵PC=2,OC=2,
∴OP===4,
∴∠OPC=30°,
∴∠COP=60°,
∵OC=OB=2,
∴△OCB是等边三角形,
∴BC=OB=2,
故答案为2
【点睛】
本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
13、b<9
【解析】
由方程有两个不相等的实数根结合根的判别式,可得出,解之即可得出实数b的取值范围.
【详解】
解:方程有两个不相等的实数根,
,
解得:.
【点睛】
本题考查的知识点是根的判别式,解题关键是牢记“当时,方程有两个不相等的实数根”.
14、
【解析】
【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
OA2==4,点A2的坐标为(4,0),
这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
以此类推便可求出点A2019的坐标为(22019,0),
则的长是,
故答案为:.
【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
15、115°
【解析】
根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.
【详解】
解:连接OC,如右图所示,
由题意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四边形ABCD是圆内接四边形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案为:115°.
【点睛】
本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.
16、61
【解析】
分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
如图②:AM2=AC2+CM2=92+4=85;
如图:AM2=52+(4+2)2=61.
∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
故答案为:61.
点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.
三、解答题(共8题,共72分)
17、(1);(2)的长为;(1)存在,画出点P的位置如图1见解析,的最小值为 .
【解析】
(1)根据勾股定理解答即可;
(2)设AE=x,根据全等三角形的性质和勾股定理解答即可;
(1)延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可.
【详解】
(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.
故答案为5;
(2)设AE=x.
∵AB=4,∴BE=4﹣x,在矩形ABCD中,根据折叠的性质知:
Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的长为;
(1)存在,如图1,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:PC=PG,∴PF+PC=GF.
过点F作FH⊥BC,交BC于点H,则有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根据勾股定理,得:GF,即PF+PC的最小值为.
【点睛】
本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.
18、(1)见解析;(2).
【解析】
对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;
对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.
【详解】
解:(1)证明:∵,
∴.
又∵为边上的中线,
∴.
∵,
∴,
∴.
(2)∵,∴.
在中,根据勾股定理,得.
由(1)得,∴,
即,
∴.
【点睛】
此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.
19、这栋高楼的高度是
【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
【详解】
过点A作AD⊥BC于点D,
依题意得,,,AD=120,
在Rt△ABD中,
∴,
在Rt△ADC中,
∴,
∴ ,
答:这栋高楼的高度是.
【点睛】
本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
20、(1);(2);(3).
【解析】
(1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
(2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
(3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
【详解】
解:(1)∵△AB′C′的边长变为了△ABC的n倍,
∴△ABC∽△AB′C′,
∴,
故答案为:.
(2)四边形是矩形,
∴.
.
在中,,
.
.
.
(3)若四边形 ABB′C′为正方形,
则,,
∴,
∴,
又∵在△ABC中,AB=,
∴,
∴
故答案为:.
【点睛】
本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
21、详见解析.
【解析】
只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.
【详解】
证明:∵AB∥CD,
∴∠EAB=∠ECD,
∵∠1=∠2,
∴∠EAM=∠ECN,
∴AM∥CN.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题.
22、(1)AD2=AC•CD.(2)36°.
【解析】
试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;
(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
试题解析:(1)∵AD=BC=,∴==.
∵AC=1,∴CD==,∴;
(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
考点:相似三角形的判定与性质.
23、(1)证明见解析;(2)
【解析】
试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
(2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
试题解析:
(1)证明:
过点O作OG⊥DC,垂足为G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中
,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切线.
(2)如图所示:连接OF.
∵OA⊥BC,
∴BE=EF= BF=1.
在Rt△OEF中,OE=5,EF=1,
∴OF=,
∴AE=OA+OE=13+5=2.
∴tan∠ABC=.
【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.
24、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:(I)解不等式(1),得x≥;
(II)解不等式(1),得x≤1;
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为:≤x≤1.
故答案为x≥、x≤1、≤x≤1.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
辽宁省铁岭市名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份辽宁省铁岭市名校2022年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了如图所示的工件,其俯视图是,下列计算结果为a6的是,若,则,下列实数中,最小的数是等内容,欢迎下载使用。
辽宁省沈阳市沈河区2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份辽宁省沈阳市沈河区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了如图,直线与y轴交于点等内容,欢迎下载使用。