2022年江苏省江阴市南闸实验校中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( )
年龄(岁)
12
13
14
15
16
人数
1
2
2
5
2
A.2,14岁 B.2,15岁 C.19岁,20岁 D.15岁,15岁
2.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
3.下列图形不是正方体展开图的是( )
A. B.
C. D.
4.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0; 当时,;,其中错误的结论有
A.②③ B.②④ C.①③ D.①④
5.如图,立体图形的俯视图是
A. B. C. D.
6.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为( )
A. B. C. D.
7. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为
A. B. C. D.
8.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )
A.12 B.48 C.72 D.96
9.下列计算正确的是( )
A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a
10.分式的值为0,则x的取值为( )
A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.
12.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).
13.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm2
14.计算的结果等于_____________.
15.不等式组的解集是____________;
16.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.
三、解答题(共8题,共72分)
17.(8分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.
18.(8分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
(1)求证:△ABD是等边三角形;
(2)若BD=3,求⊙O的半径.
19.(8分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.
20.(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
21.(8分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)
(1)当y=0时,求x的值.
(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cot∠MCB的值.
22.(10分)﹣(﹣1)2018+﹣()﹣1
23.(12分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
24.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:数据1出现了5次,最多,故为众数为1;
按大小排列第6和第7个数均是1,所以中位数是1.
故选D.
【点睛】
本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
2、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
3、B
【解析】
由平面图形的折叠及正方体的展开图解题.
【详解】
A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
故选B.
【点睛】
此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
4、C
【解析】
①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;
②根据自变量为-1时函数值,可得答案;
③根据观察函数图象的纵坐标,可得答案;
④根据对称轴,整理可得答案.
【详解】
图象开口向下,得a<0,
图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;
②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;
③由图象,得
图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;
④由对称轴,得x=-=1,解得b=-2a,
2a+b=0
故④正确;
故选D.
【点睛】
考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
5、C
【解析】
试题分析:立体图形的俯视图是C.故选C.
考点:简单组合体的三视图.
6、B
【解析】
连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
【详解】
解:连接OE,如图所示:
∵四边形ABCD是菱形,
∴∠D=∠B=60°,AD=AB=4,
∴OA=OD=2,
∵OD=OE,
∴∠OED=∠D=60°,
∴∠DOE=180°﹣2×60°=60°,
∴ 的长==;
故选B.
【点睛】
本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
7、C
【解析】
分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
详解:1800000这个数用科学记数法可以表示为
故选C.
点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
8、C
【解析】
解:根据图形,
身高在169.5cm~174.5cm之间的人数的百分比为:,
∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
故选C.
9、D
【解析】
根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.
【详解】
解:A.x4•x4=x4+4=x8≠x16,故该选项错误;
B.(a3)2=a3×2=a6≠a5,故该选项错误;
C.(ab2)3=a3b6≠ab6,故该选项错误;
D.a+2a=(1+2)a=3a,故该选项正确;
故选D.
考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.
10、A
【解析】
分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
∵原式的值为2,
∴,
∴(x-2)(x+3)=2,即x=2或x=-3;
又∵|x|-2≠2,即x≠±2.
∴x=-3.
故选:A.
【点睛】
此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.
点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.
12、.
【解析】
作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
【详解】
作AH∥EF交BC于H.
∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
∵AE=ED=HF,∴.
∵BC=2AD,∴2.
∵BF=FC,∴,∴.
∵.
故答案为:.
【点睛】
本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
13、60π
【解析】
圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.
解:圆锥的侧面积=π×6×10=60πcm1.
14、a3
【解析】
试题解析:x5÷x2=x3.
考点:同底数幂的除法.
15、﹣9<x≤﹣1
【解析】
分别求出两个不等式的解集,再求其公共解集.
【详解】
,
解不等式①,得:x≤-1,
解不等式②,得:x>-9,
所以不等式组的解集为:-9<x≤-1,
故答案为:-9<x≤-1.
【点睛】
本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
16、
【解析】
判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.
【详解】
解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,
故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.
故答案为.
【点睛】
考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.
三、解答题(共8题,共72分)
17、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
【解析】
(1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
(2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
(3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
【详解】
(1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
(2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
AE•BC=OC•AB,∴AE==.
在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
(3)作BH⊥CD于H,如图2,设H(m,n).
∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
m2+(n﹣3)2=()2=,②
②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
综上所述:D点坐标为(1,2)或(4,﹣25).
【点睛】
本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
18、(1)详见解析;(2).
【解析】
(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.
【详解】
解:(1)∵∠BCD=120°,CA平分∠BCD,
∴∠ACD=∠ACB=60°,
由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,
∴△ABD是等边三角形;
(2)连接OB、OD,作OH⊥BD于H,
则DH=BD=,
∠BOD=2∠BAD=120°,
∴∠DOH=60°,
在Rt△ODH中,OD==,
∴⊙O的半径为.
【点睛】
本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.
19、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.
当x=﹣时,原式=(﹣)2﹣1=3﹣1=﹣2.
【解析】
应用整式的混合运算法则进行化简,最后代入x值求值.
20、(1)补图见解析;(2)27°;(3)1800名
【解析】
(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;
(2)用360°乘以对应的比例即可求解;
(3)用总人数乘以对应的百分比即可求解.
【详解】
(1)抽取的总人数是:10÷25%=40(人),
在B类的人数是:40×30%=12(人).
;
(2)扇形统计图扇形D的圆心角的度数是:360×=27°;
(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).
考点:条形统计图、扇形统计图.
21、(1),;(2)
【解析】
(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.
(2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cot∠MCB.
【详解】
(1)把代入函数解析式得,
即,
解得:,.
(2)把代入得,即得,
∵二次函数,与轴的交点为,∴点坐标为.
设直线的解析式为,代入,得解得,
∴,
∴点坐标为,
在中,又∵
∴.
【点睛】
本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.
22、-1.
【解析】
直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.
【详解】
原式=﹣1+1﹣3
=﹣1.
【点睛】
本题主要考查了实数运算,正确化简各数是解题的关键.
23、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,
即∠APC=∠BPD,
在△APC和△BPD中,
∵AP=PB,∠APC=∠BPD,PC=PD,
∴△APC≌△BPD,
∴AC=BD.
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)四边形EFGH是正方形.
证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
考点:平行四边形的判定与性质;中点四边形.
24、(1)两次下降的百分率为10%;
(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.
【解析】
(1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
【详解】
解:(1)设每次降价的百分率为 x.
40×(1﹣x)2=32.4
x=10%或 190%(190%不符合题意,舍去)
答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,
由题意,得
解得:=1.1,=2.1,
∵有利于减少库存,∴y=2.1.
答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
2024年江苏省无锡市江阴市南闸实验学校中考数学调研试卷(3月份)(含解析): 这是一份2024年江苏省无锡市江阴市南闸实验学校中考数学调研试卷(3月份)(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省江阴市南闸实验学校2023-2024学年七年级上学期10月质量调研数学试卷: 这是一份江苏省江阴市南闸实验学校2023-2024学年七年级上学期10月质量调研数学试卷,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省江阴市南闸实验学校2023-2024学年九年级上学期10月质量调研数学试卷: 这是一份江苏省江阴市南闸实验学校2023-2024学年九年级上学期10月质量调研数学试卷,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。