2021-2022学年江苏省江阴市南闸实验校中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cm B.cm C.8cm D.cm
2.若分式有意义,则x的取值范围是( )
A.x>3 B.x<3 C.x≠3 D.x=3
3.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
A.4 B.5 C.6 D.7
4.函数y=中,自变量x的取值范围是( )
A.x>3 B.x<3 C.x=3 D.x≠3
5.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A. B. C. D.
6.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为( )
A.60° B.65° C.70° D.75°
7.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )
A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
8.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )
A. B.
C. D.
9.估计的值在 ( )
A.4和5之间 B.5和6之间
C.6和7之间 D.7和8之间
10.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是( )
A.①②③ B.②③④ C.①③④ D.①②④
二、填空题(本大题共6个小题,每小题3分,共18分)
11.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.
12.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.
13.已知:a(a+2)=1,则a2+ =_____.
14.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____
15.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.
16.如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.
三、解答题(共8题,共72分)
17.(8分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.
(1)抛物线的对称轴是直线________;
(2)当时,求抛物线的函数表达式;
(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.
18.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
19.(8分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.
(1)图①中,点C在⊙O上;
(2)图②中,点C在⊙O内;
20.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
21.(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有
“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.
(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
利用图中所提供的信息解决以下问题:
①小明一共统计了 个评价;
②请将图1补充完整;
③图2中“差评”所占的百分比是 ;
(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.
22.(10分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.
(1)如图1,当C,B两点均在直线MN的上方时,
①直接写出线段AE,BF与CE的数量关系.
②猜测线段AF,BF与CE的数量关系,不必写出证明过程.
(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.
(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.
23.(12分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为.
(1)求,,的值;
(2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积.
24.如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,
∴留下的扇形的弧长==12π,
根据底面圆的周长等于扇形弧长,
∴圆锥的底面半径r==6cm,
∴圆锥的高为=3cm
故选B.
考点: 圆锥的计算.
2、C
【解析】
试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
考点:分式有意义的条件.
3、C
【解析】
试题解析:∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=10°,
∴边数n=310°÷10°=1.
故选C.
考点:多边形内角与外角.
4、D
【解析】
由题意得,x﹣1≠0,
解得x≠1.
故选D.
5、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
6、C
【解析】
由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.
【详解】
∵AD=CD,∠1=40°,
∴∠ACD=70°,
∵AB∥CD,
∴∠2=∠ACD=70°,
故选:C.
【点睛】
本题考查了等腰三角形的性质,平行线的性质,是基础题.
7、B
【解析】
∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
∴抛物线对称轴为x=﹣1.
∴抛物线与y轴的交点为A(0,﹣3).
则与A点以对称轴对称的点是B(2,﹣3).
若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
则B点平移后坐标应为(4,﹣3),
因此将抛物线C向右平移4个单位.
故选B.
8、B
【解析】
试题解析:∵转盘被等分成6个扇形区域,
而黄色区域占其中的一个,
∴指针指向黄色区域的概率=.
故选A.
考点:几何概率.
9、C
【解析】
根据 ,可以估算出位于哪两个整数之间,从而可以解答本题.
【详解】
解:∵
即
故选:C.
【点睛】
本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.
10、C
【解析】
解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;
当P的横纵坐标相等时PA=PB,故②错误;
∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;
连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;
综上所述,正确的结论有①③④.故选C.
点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(1,﹣2).
【解析】
若设M(x,y),则由题目中对“实际距离”的定义可得方程组:
3-x+1-y=y+1+x+1=1-x+3+y,
解得:x=1,y=-2,
则M(1,-2).
故答案为(1,-2).
12、2-2
【解析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.
【详解】
解:由于P为线段AB=4的黄金分割点,
且AP是较长线段;
则AP=4×=cm,
故答案为:(2-2)cm.
【点睛】
此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.
13、3
【解析】
先根据a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+进行计算.
【详解】
a(a+2)=1得出a2=1-2a,
a2+1-2a+= ===3.
【点睛】
本题考查的是代数式求解,熟练掌握代入法是解题的关键.
14、
【解析】
根据平行线分线段成比例定理解答即可.
【详解】
解:∵DE∥BC,AD=2BD,
∴,
∵EF∥AB,
∴,
故答案为.
【点睛】
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
15、1a1.
【解析】
结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.
【详解】
阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积
=(1a)1+a1-×1a×3a
=4a1+a1-3a1
=1a1.
故答案为:1a1.
【点睛】
此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.
16、(,)
【解析】
分析:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,则有△AOE≌△OCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出,设点A的坐标为(a,)(a>0),由可求出a值,进而得到点A的坐标.
详解:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,如图所示.
∵△ABC为等腰直角三角形,
∴OA=OC,OC⊥AB,
∴∠AOE+∠COF=90°.
∵∠COF+∠OCF=90°,
∴∠AOE=∠OCF.
在△AOE和△OCF中,
,
∴△AOE≌△OCF(AAS),
∴AE=OF,OE=CF.
∵BP平分∠ABC,
∴,
∴.
设点A的坐标为(a,),
∴,
解得:a=或a=-(舍去),
∴=,
∴点A的坐标为(,),
故答案为:((,)).
点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键.
三、解答题(共8题,共72分)
17、(1);(2);(3)
【解析】
(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围.
【详解】
(1)∵抛物线的表达式为,
∴抛物线的对称轴为直线.
故答案为:.
(2)∵抛物线的对称轴为直线,,
∴点的坐标为,点的坐标为.
将代入,得:,
解得:,
∴抛物线的函数表达式为.
(3)∵,
∴点的坐标为.
∵直线y=n与直线的交点的横坐标记为,且当时,总有,
∴x2
∴直线与轴的交点在下方,
∴.
∵直线:经过抛物线的顶点,
∴,
∴.
【点睛】
本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.
18、(1);(2).
【解析】
(1)直接根据概率公式求解即可;
(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.
【详解】
解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,
∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;
(2)画树状图:
共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,
则甲、乙两位嘉宾能分为同队的概率是.
19、图形见解析
【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E ,利用(1)的方法画图即可.
试题解析:
如图①∠DBC就是所求的角;
如图②∠FBE就是所求的角
20、水坝原来的高度为12米
【解析】
试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
试题解析:设BC=x米,
在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
在Rt△EBD中,
∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
即2+x=4+,解得x=12,即BC=12,
答:水坝原来的高度为12米..
考点:解直角三角形的应用,坡度.
21、(1)①150;②作图见解析;③13.3%;(2).
【解析】
(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;
(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.
【详解】
①小明统计的评价一共有:(40+20)÷(1-60%=150(个);
②“好评”一共有150×60%=90(个),补全条形图如图1:
③图2中“差评”所占的百分比是:×100%=13.3%;
(2)列表如下:
好
中
差
好
好,好
好,中
好,差
中
中,好
中,中
中,差
差
差,好
差,中
差,差
由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
∴两人中至少有一个给“好评”的概率是.
考点:扇形统计图;条形统计图;列表法与树状图法.
22、(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,证明见解析;(3)FG=.
【解析】
(1)①只要证明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;
②利用①中结论即可解决问题;
(2)首先证明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解决问题;
【详解】
解:(1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,
∵CE⊥MN,CD⊥BF,
∴∠CEA=∠D=90°,
∵CE⊥MN,CD⊥BF,BF⊥MN,
∴四边形CEFD为矩形,
∴∠ECD=90°,
又∵∠ACB=90°,
∴∠ACB-∠ECB=∠ECD-∠ECB,
即∠ACE=∠BCD,
又∵△ABC为等腰直角三角形,
∴AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(AAS),
∴AE=BD,CE=CD,
又∵四边形CEFD为矩形,
∴四边形CEFD为正方形,
∴CE=EF=DF=CD,
∴AE+BF=DB+BF=DF=EC.
②由①可知:AF+BF=AE+EF+BF
=BD+EF+BF
=DF+EF
=2CE,
(2)AF-BF=2CE
图2中,过点C作CG⊥BF,交BF延长线于点G,
∵AC=BC
可得∠AEC=∠CGB,
∠ACE=∠BCG,
在△CBG和△CAE中,
,
∴△CBG≌△CAE(AAS),
∴AE=BG,
∵AF=AE+EF,
∴AF=BG+CE=BF+FG+CE=2CE+BF,
∴AF-BF=2CE;
(3)如图3,过点C做CD⊥BF,交FB的于点D,
∵AC=BC
可得∠AEC=∠CDB,
∠ACE=∠BCD,
在△CBD和△CAE中,
,
∴△CBD≌△CAE(AAS),
∴AE=BD,
∵AF=AE-EF,
∴AF=BD-CE=BF-FD-CE=BF-2CE,
∴BF-AF=2CE.
∵AF=3,BF=7,
∴CE=EF=2,AE=AF+EF=5,
∵FG∥EC,
∴,
∴,
∴FG=.
【点睛】
本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
23、(1)m=4, n=1,k=3.(2)3.
【解析】
(1) 把点,分别代入直线中即可求出m=4,再把代入直线即可求出n=1.把代入函数求出k即可;
(2)由(1)可求出点B的坐标为(0,4),点B‘是由点B向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B是平行四边形,再根据平行四边形的面积计算公式计算即可.
【详解】
解:(1)把点,分别代入直线中得:
-4+m=0,
m=4,
∴直线解析式为.
把代入得:
n=-3+4=1.
∴点C的坐标为(3,1)
把(3,1)代入函数得:
解得:k=3.
∴m=4, n=1,k=3.
(2)如图,设点B的坐标为(0,y)则y=-0+4=4
∴点B的坐标是(0,4)
当y=4时,
解得,
∴点B’( ,4)
∵A’,B’是由A,B向右平移得到,
∴四边形AA’B’B是平行四边形,
故四边形AA’B’B的面积=4=3.
【点睛】
本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.
24、(6+2)米
【解析】
根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.
【详解】
由题意可知∠BAD=∠ADB=45°,
∴FD=EF=6米,
在Rt△PEH中,
∵tanβ==,
∴BF==5,
∴PG=BD=BF+FD=5+6,
∵tanβ= ,
∴CG=(5+6)·=5+2,
∴CD=(6+2)米.
【点睛】
本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
2024年江苏省无锡市江阴市南闸实验学校中考数学调研试卷(3月份)(含解析): 这是一份2024年江苏省无锡市江阴市南闸实验学校中考数学调研试卷(3月份)(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市江阴市南菁高中学实验校2021-2022学年中考数学五模试卷含解析: 这是一份江苏省无锡市江阴市南菁高中学实验校2021-2022学年中考数学五模试卷含解析,共26页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。
江苏省无锡江阴市南菁实验校2022年中考五模数学试题含解析: 这是一份江苏省无锡江阴市南菁实验校2022年中考五模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,已知一次函数y=等内容,欢迎下载使用。