2022年杭州市西湖区中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为( )
A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
2.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
选手
1
2
3
4
5
6
7
8
9
10
时间(min)
129
136
140
145
146
148
154
158
165
175
由此所得的以下推断不正确的是( )
A.这组样本数据的平均数超过130
B.这组样本数据的中位数是147
C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
3.计算 的结果是( )
A.a2 B.-a2 C.a4 D.-a4
4.不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
5.4的平方根是( )
A.16 B.2 C.±2 D.±
6.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则
y1>y1.其中说法正确的是( )
A.①② B.②③ C.①②④ D.②③④
7.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
8.如图,若AB∥CD,则α、β、γ之间的关系为( )
A.α+β+γ=360° B.α﹣β+γ=180°
C.α+β﹣γ=180° D.α+β+γ=180°
9.1﹣的相反数是( )
A.1﹣ B.﹣1 C. D.﹣1
10.下列运算正确的是( )
A.(a2)4=a6 B.a2•a3=a6 C. D.
11.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B.
C. D.
12.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△OBC的面积为____.
14.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
15.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
16.若关于x的方程有两个不相等的实数根,则实数a的取值范围是______.
17.分解因式:8x²-8xy+2y²= _________________________ .
18.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)
20.(6分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
21.(6分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
22.(8分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?
23.(8分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
24.(10分)先化简,再求值:( +)÷,其中x=
25.(10分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=,求AB的长.
26.(12分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
27.(12分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据科学记数法的表示方法解答.
【详解】
解:把这个数用科学记数法表示为.
故选:.
【点睛】
此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
2、C
【解析】
分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.
3、D
【解析】
直接利用同底数幂的乘法运算法则计算得出答案.
【详解】
解:,
故选D.
【点睛】
此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
4、C
【解析】
分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.
【详解】
解:解不等式﹣x+7<x+3得:x>2,
解不等式3x﹣5≤7得:x≤4,
∴不等式组的解集为:2<x≤4,
故选:C.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5、C
【解析】
试题解析:∵(±2)2=4,
∴4的平方根是±2,
故选C.
考点:平方根.
6、C
【解析】
∵二次函数的图象的开口向上,∴a>0。
∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0。
∵二次函数图象的对称轴是直线x=﹣1,∴。∴b=1a>0。
∴abc<0,因此说法①正确。
∵1a﹣b=1a﹣1a=0,因此说法②正确。
∵二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),
∴图象与x轴的另一个交点的坐标是(1,0)。
∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此说法③错误。
∵二次函数图象的对称轴为x=﹣1,
∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
∵当x>﹣1时,y随x的增大而增大,而<3
∴y1<y1,因此说法④正确。
综上所述,说法正确的是①②④。故选C。
7、A
【解析】
分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
详解:换人前6名队员身高的平均数为==188,
方差为S2==;
换人后6名队员身高的平均数为==187,
方差为S2==
∵188>187,>,
∴平均数变小,方差变小,
故选:A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
8、C
【解析】
过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
【详解】
解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
故选:C.
【点睛】
本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
9、B
【解析】
根据相反数的的定义解答即可.
【详解】
根据a的相反数为-a即可得,1﹣的相反数是﹣1.
故选B.
【点睛】
本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.
10、C
【解析】
根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
【详解】
A、原式=a8,所以A选项错误;
B、原式=a5,所以B选项错误;
C、原式= ,所以C选项正确;
D、与不能合并,所以D选项错误.
故选:C.
【点睛】
本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
11、A
【解析】
画出从正面看到的图形即可得到它的主视图.
【详解】
这个几何体的主视图为:
故选:A.
【点睛】
本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
12、A
【解析】
试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6
【解析】
根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△OBC的面积.
【详解】
设点A的坐标为(a,),点B的坐标为(b,),
∵点C是x轴上一点,且AO=AC,
∴点C的坐标是(2a,0),
设过点O(0,0),A(a, )的直线的解析式为:y=kx,
∴=k⋅a,
解得k=,
又∵点B(b, )在y=x上,
∴=⋅b,解得, =或=− (舍去),
∴S△OBC==6.
故答案为:6.
【点睛】
本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.
14、6
【解析】
设这个扇形的半径为,根据题意可得:
,解得:.
故答案为.
15、.
【解析】
试题分析:画树状图为:
共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.
考点:列表法与树状图法.
16、a>﹣.
【解析】
试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.
考点:根的判别式.
17、1
【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.
【详解】
8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.
故答案为:1(1x-y)1
【点睛】
此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.
18、2
【解析】
只要证明△PBC是等腰直角三角形即可解决问题.
【详解】
解:∵∠APO=∠BPO=30°,
∴∠APB=60°,
∵PA=PC=PB,∠APC=30°,
∴∠BPC=90°,
∴△PBC是等腰直角三角形,
∵OA=1,∠APO=30°,
∴PA=2OA=2,
∴BC=PC=2,
故答案为2.
【点睛】
本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、隧道最短为1093米.
【解析】
【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.
【详解】如图,作BD⊥AC于D,
由题意可得:BD=1400﹣1000=400(米),
∠BAC=30°,∠BCA=45°,
在Rt△ABD中,
∵tan30°=,即,
∴AD=400(米),
在Rt△BCD中,
∵tan45°=,即,
∴CD=400(米),
∴AC=AD+CD=400+400≈1092.8≈1093(米),
答:隧道最短为1093米.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.
20、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
【解析】
【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
(2)在(1)的基础上分段表示利润,讨论最值;
(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
32=12m﹣76m,
解得m=,
当第26天的售价为25元/千克时,代入y=n,
则n=25,
故答案为m=,n=25;
(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
当1≤x<20时,
W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
∴当x=18时,W最大=968,
当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
∵28>0,
∴W随x的增大而增大,
∴当x=30时,W最大=952,
∵968>952,
∴当x=18时,W最大=968;
(3)当1≤x<20时,令﹣2x2+72x+320=870,
解得x1=25,x2=11,
∵抛物线W=﹣2x2+72x+320的开口向下,
∴11≤x≤25时,W≥870,
∴11≤x<20,
∵x为正整数,
∴有9天利润不低于870元,
当20≤x≤30时,令28x+112≥870,
解得x≥27,
∴27≤x≤30
∵x为正整数,
∴有3天利润不低于870元,
∴综上所述,当天利润不低于870元的天数共有12天.
【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
21、(1)图见解析;(2)126°;(3)1.
【解析】
(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
【详解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
将条形统计图补充完整,如图所示.
(2)42÷120×100%×360°=126°.
答:扇形统计图中的A等对应的扇形圆心角为126°.
(3)1500×=1(人).
答:该校学生对政策内容了解程度达到A等的学生有1人.
【点睛】
本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
22、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.
【解析】
(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算
(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;
(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.
【详解】
解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.
根据题意,得300+0.8x=x,
解得x=1500,
所以当顾客消费等于1500元时,买卡与不买卡花钱相等;
当顾客消费少于1500元时,300+0.8xx不买卡合算;
当顾客消费大于1500元时,300+0.8xx买卡合算;
(2)小张买卡合算,
3500﹣(300+3500×0.8)=400,
所以,小张能节省400元钱;
(3)设进价为y元,根据题意,得
(300+3500×0.8)﹣y=25%y,
解得 y=2480
答:这台冰箱的进价是2480元.
【点睛】
此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
23、大和尚有25人,小和尚有75人.
【解析】
设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设大和尚有x人,小和尚有y人,
依题意,得:,
解得:.
答:大和尚有25人,小和尚有75人.
【点睛】
考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
24、-
【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
【详解】
原式=[ +]÷=[-+]÷=·=,
当x=时,原式==-.
【点睛】
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
25、(1)证明见解析(2)3
【解析】
(1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
(2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
【详解】
相切,连接,
∵为的中点,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴直线与相切;
方法:连接,
∵,,
∵,
∴,
∵是的切线,
∴,
∴,
∴,
∵为的中点,
∴,
∵为的直径,
∴,
∴.
方法:∵,
易得,
∴,
∴.
【点睛】
本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
26、(1);(2)
【解析】
试题分析:(1)利用概率公式直接计算即可;
(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
试题解析:
(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
(2)画树形图得:
由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
考点:列表法与树状图法;概率公式.
27、【解析】
试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;
(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.
试题解析:(1)20÷20%=100,
九年级参赛作文篇数对应的圆心角=360°×=126°;
100﹣20﹣35=45,
补全条形统计图如图所示:
(2)假设4篇荣获特等奖的作文分别为A、B、C、D,
其中A代表七年级获奖的特等奖作文.
画树状图法:
共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,
∴P(七年级特等奖作文被选登在校刊上)= .
考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.
浙江省杭州市拱墅区公益中学2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份浙江省杭州市拱墅区公益中学2022年中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年建湖实中教育集团中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年建湖实中教育集团中考数学最后冲刺浓缩精华卷含解析,共26页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。