2022年庐江县中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.对于任意实数k,关于x的方程的根的情况为
A.有两个相等的实数根 B.没有实数根
C.有两个不相等的实数根 D.无法确定
2.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A.15 B.13 C.12 D.5
3.下列计算正确的有( )个
①(﹣2a2)3=﹣6a6 ②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4 ④﹣2m3+m3=﹣m3 ⑤﹣16=﹣1.
A.0 B.1 C.2 D.3
4.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为( )
A.99° B.109° C.119° D.129°
5.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
6.若关于的一元二次方程的一个根是0,则的值是( )
A.1 B.-1 C.1或-1 D.
7.计算(﹣ab2)3的结果是( )
A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
8.下列各类数中,与数轴上的点存在一一对应关系的是( )
A.有理数 B.实数 C.分数 D.整数
9.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是( )
A.38 B.39 C.40 D.42
10.已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.
12.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.
13.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+DC的最小值是_____.
14.已知∠=32°,则∠的余角是_____°.
15. “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.
16.把多项式9x3﹣x分解因式的结果是_____.
三、解答题(共8题,共72分)
17.(8分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E
(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.
18.(8分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
(1)求抛物线的顶点C的坐标及A,B两点的坐标;
(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
19.(8分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.
问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为 ;
题探究:(2)①当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为 ;
②当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;
问题拓展:(3)在(1)(2)的条件下,若AP=,∠DEM=15°,则DM= .
20.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
21.(8分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
(参考数据:sin15°=,cos15°=,tan15°=2﹣)
(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.
22.(10分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
23.(12分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
24.某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
∵a=1,b=,c=,
∴.
∴此方程有两个不相等的实数根.故选C.
2、A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=1.
故选A.
【解答】
解:
【点评】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.
3、C
【解析】
根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.
【详解】
①(﹣2a2)3=﹣8a6,错误;
②(x﹣2)(x+3)=x2+x﹣6,错误;
③(x﹣2)2=x2﹣4x+4,错误
④﹣2m3+m3=﹣m3,正确;
⑤﹣16=﹣1,正确.
计算正确的有2个.
故选C.
【点睛】
考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算.
4、B
【解析】
方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.
【详解】
解:由题意作图如下
∠DAC=46°,∠CBE=63°,
由平行线的性质可得
∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,
∴∠ACB=∠ACF+∠BCF=46°+63°=109°,
故选B.
【点睛】
本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.
5、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
6、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
【点睛】
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
7、D
【解析】
根据积的乘方与幂的乘方计算可得.
【详解】
解:(﹣ab2)3=﹣a3b6,
故选D.
【点睛】
本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
法则.
8、B
【解析】
根据实数与数轴上的点存在一一对应关系解答.
【详解】
实数与数轴上的点存在一一对应关系,
故选:B.
【点睛】
本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.
9、B
【解析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
【详解】
解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.
【点睛】
本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
10、B
【解析】
分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.
详解: ∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,
∴b>0,
∵交点横坐标为1,
∴a+b+c=b,
∴a+c=0,
∴ac<0,
∴一次函数y=bx+ac的图象经过第一、三、四象限.
故选B.
点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.
【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:
.
故答案为
【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.
12、3:4
【解析】
由于相似三角形的相似比等于对应中线的比,
∴△ABC与△DEF对应中线的比为3:4
故答案为3:4.
13、(Ⅰ)AC=4 (Ⅱ)4,2.
【解析】
(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;
(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.
【详解】
解:(Ⅰ)如图,过B作BE⊥AC于E,
∵BA=BC=4,
∴AE=CE,
∵∠A=30°,
∴AE=AB=2,
∴AC=2AE=4;
(Ⅱ)如图,作BC的垂直平分线交AC于D,
则BD=CD,此时BD+DC的值最小,
∵BF=CF=2,
∴BD=CD= =,
∴BD+DC的最小值=2,
故答案为:4,2.
【点睛】
本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.
14、58°
【解析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.
【详解】
解:∠α的余角是:90°-32°=58°.
故答案为58°.
【点睛】
本题考查余角,解题关键是掌握互为余角的两个角的和为90度.
15、 ﹣=1.
【解析】
原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:﹣=1.
故答案是:﹣=1.
16、x(3x+1)(3x﹣1)
【解析】
提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.
【详解】
9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案为x(3x+1)(3x-1).
【点睛】
本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.
三、解答题(共8题,共72分)
17、(1)详见解析;(2)∠BDE=20°.
【解析】
(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.
【详解】
(1)如图1,∵AC是⊙O的直径,
∴∠ABC=90°,
∵DE⊥AB,
∴∠DEA=90°,
∴∠DEA=∠ABC,
∴BC∥DF,
∴∠F=∠PBC,
∵四边形BCDF是圆内接四边形,
∴∠F+∠DCB=180°,
∵∠PCB+∠DCB=180°,
∴∠F=∠PCB,
∴∠PBC=∠PCB,
∴PC=PB;
(2)如图2,连接OD,
∵AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥DC,
∵BC∥DE,
∴四边形DHBC是平行四边形,
∴BC=DH=1,
在Rt△ABC中,AB=,tan∠ACB=,
∴∠ACB=60°,
∴BC=AC=OD,
∴DH=OD,
在等腰△DOH中,∠DOH=∠OHD=80°,
∴∠ODH=20°,
设DE交AC于N,
∵BC∥DE,
∴∠ONH=∠ACB=60°,
∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
∴∠DOC=∠DOH﹣∠NOH=40°,
∵OA=OD,
∴∠OAD=∠DOC=20°,
∴∠CBD=∠OAD=20°,
∵BC∥DE,
∴∠BDE=∠CBD=20°.
【点睛】
本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.
18、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
【解析】
分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
(Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
联立,
解得:或;
(II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
将A(1,4),C(2,0)代入y=kx+b中,∴,
解得:,
∴直线AC的解析式为y=﹣2x+1.
当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
∴当点E在△DAC内时,<t<5;
(III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
由直线y=x+2与x轴交于点D,与y轴交于点F,
得D(﹣2,0),F(0,2),∴OD=OF=2.
∵∠FOD=90°,∴∠OFD=∠ODF=45°.
∵OC=OF=2,∠FOC=90°,
∴CF==2,∠OFC=∠OCF=45°,
∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
∴PM=2CF=1.
∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
在Rt△PGM中,sin∠PGM=, ∴PG===3.
∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
∵P(m,n)在抛物线y=x2﹣1x+9上,
∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.
点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.
19、 (1) DM=AD+AP ;(2) ①DM=AD﹣AP ; ②DM=AP﹣AD ;(3) 3﹣或﹣1.
【解析】
(1)根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
(2)①根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
②根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
(3)分两种情况利用勾股定理和三角函数解答即可.
【详解】
(1)DM=AD+AP,理由如下:
∵正方形ABCD,
∴DC=AB,∠DAP=90°,
∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,
∴DP=PE,∠PNE=90°,∠DPE=90°,
∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
∴∠DAP=∠EPN,
在△ADP与△NPE中,
,
∴△ADP≌△NPE(AAS),
∴AD=PN,AP=EN,
∴AN=DM=AP+PN=AD+AP;
(2)①DM=AD﹣AP,理由如下:
∵正方形ABCD,
∴DC=AB,∠DAP=90°,
∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,
∴DP=PE,∠PNE=90°,∠DPE=90°,
∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
∴∠DAP=∠EPN,
在△ADP与△NPE中,
,
∴△ADP≌△NPE(AAS),
∴AD=PN,AP=EN,
∴AN=DM=PN﹣AP=AD﹣AP;
②DM=AP﹣AD,理由如下:
∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,
∴∠DAP=∠PEN,
又∵∠A=∠PNE=90°,DP=PE,
∴△DAP≌△PEN,
∴AD=PN,
∴DM=AN=AP﹣PN=AP﹣AD;
(3)有两种情况,如图2,DM=3﹣,如图3,DM=﹣1;
①如图2:∵∠DEM=15°,
∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
在Rt△PAD中AP=,AD==3,
∴DM=AD﹣AP=3﹣;
②如图3:∵∠DEM=15°,
∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
在Rt△PAD中AP=,AD=AP•tan30°==1,
∴DM=AP﹣AD=﹣1.
故答案为;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.
【点睛】
此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出△ADP≌△PFN是解本题的关键.
20、(1)见解析;(2)见解析
【解析】
(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
【详解】
解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
∴四边形BCFE是平行四边形.
又∵BE=FE,∴四边形BCFE是菱形.
(2)∵∠BCF=120°,∴∠EBC=60°.
∴△EBC是等边三角形.
∴菱形的边长为4,高为.
∴菱形的面积为4×=.
21、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
【解析】
(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
【详解】
解:(1)EF∥BD.
证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
∴DE=BF,
又∵DE∥BF,
∴四边形DBFE是平行四边形,
∴EF∥DB;
(2)①AE=AM.
∵EF∥BD,
∴∠F=∠ABD=45°,
∴MB=BF=DE,
∵正方形ABCD,
∴∠ADC=∠ABC=90°,AB=AD,
∴△ADE≌△ABM,
∴AE=AM;
②△AEM能为等边三角形.
若△AEM是等边三角形,则∠EAM=60°,
∵△ADE≌△ABM,
∴∠DAE=∠BAM=15°,
∵tan∠DAE=,AD=8,
∴2﹣=,
∴DE=16﹣8,
即当DE=16﹣8时,△AEM是等边三角形;
(3)△ANF的面积不变.
设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,
∵CD∥AB,
∴△DEN∽△BNA,
∴=,
∴,
∴PN=,
∴S△ANF=AF×PN=×(x+8)×=32,
即△ANF的面积不变.
【点睛】
本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
22、(1)117(2)见解析(3)B(4)30
【解析】
(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;
(2)根据以上所求结果即可补全图形;
(3)根据中位数的定义求解可得;
(4)总人数乘以样本中A等级人数所占比例可得.
【详解】
解:(1)∵总人数为18÷45%=40人,
∴C等级人数为40﹣(4+18+5)=13人,
则C对应的扇形的圆心角是360°×=117°,
故答案为117;
(2)补全条形图如下:
(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,
所以所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案为B.
(4)估计足球运球测试成绩达到A级的学生有300×=30人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、(1)见解析;(2)见解析.
【解析】
试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
试题解析:
证明:(1)选取①②,
∵在△BEO和△DFO中,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四边形ABCD是平行四边形.
点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
24、 (1)560;(2)54;(3)补图见解析;(4)18000人
【解析】
(1)本次调查的样本容量为224÷40%=560(人);
(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;
(3)“讲解题目”的人数是:560−84−168−224=84(人).
(4)60000×=18000(人),
答:在课堂中能“独立思考”的学生约有18000人.
广西合浦县2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份广西合浦县2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,1﹣的相反数是等内容,欢迎下载使用。
安徽省合肥市庐江县志成学校2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份安徽省合肥市庐江县志成学校2022年中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,属于必然事件的是等内容,欢迎下载使用。
2022年陕西省滨河中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年陕西省滨河中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了下列判断错误的是,如下图所示,该几何体的俯视图是,中国古代在利用“计里画方”等内容,欢迎下载使用。