|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖南省长沙市望城区中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2022年湖南省长沙市望城区中考猜题数学试卷含解析01
    2022年湖南省长沙市望城区中考猜题数学试卷含解析02
    2022年湖南省长沙市望城区中考猜题数学试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省长沙市望城区中考猜题数学试卷含解析

    展开
    这是一份2022年湖南省长沙市望城区中考猜题数学试卷含解析,共19页。试卷主要包含了的值是,计算4×的结果等于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若实数m满足,则下列对m值的估计正确的是(  )
    A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<2
    2.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是(  )

    A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
    3.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )

    A. B. C. D.1
    4.的值是  
    A.±3 B.3 C.9 D.81
    5.关于的分式方程解为,则常数的值为( )
    A. B. C. D.
    6.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为(  )
    A.y=x+1 B.y=x-1 C.y=x D.y=x-2
    7.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )

    A.和 B.谐 C.凉 D.山
    8.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.m<3 B.m>3 C.m≤3 D.m≥3
    9.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是  

    A.4 B. C.5 D.6
    10.计算4×(–9)的结果等于
    A.32 B.–32 C.36 D.–36
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在平行四边形 ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点 E,交 DC 的延长线于点 F,BG⊥AE,垂足为 G,BG=4,则△CEF 的周长为____.

    12.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
    13.让我们轻松一下,做一个数字游戏:
    第一步:取一个自然数,计算得;
    第二步:算出的各位数字之和得,计算得;
    第三步:算出的各位数字之和得,再计算得;
    依此类推,则____________
    14.反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=____.
    15.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .

    16.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是

    17.分式方程-1=的解是x=________.
    三、解答题(共7小题,满分69分)
    18.(10分)已知点O是正方形ABCD对角线BD的中点.
    (1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
    ①∠AEM=∠FEM; ②点F是AB的中点;
    (2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
    (3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).
    19.(5分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.

    求证:(1)AE=BF;(2)AE⊥BF.
    20.(8分)计算﹣14﹣
    21.(10分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
    (1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
    (2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
    (3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.

    22.(10分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)

    23.(12分)如图1,抛物线y1=ax1﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.

    (1)求抛物线y1的解析式;
    (1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
    (3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
    24.(14分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场
    决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2
    件.设每件商品降价x元. 据此规律,请回答:
    (1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x的代数式表示);
    (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题解析:∵,
    ∴m2+2+=0,
    ∴m2+2=-,
    ∴方程的解可以看作是函数y=m2+2与函数y=-,
    作函数图象如图,
    在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,
    当m=-2时y=m2+2=4+2=6,y=-=-=2,
    ∵6>2,
    ∴交点横坐标大于-2,
    当m=-1时,y=m2+2=1+2=3,y=-=-=4,
    ∵3<4,
    ∴交点横坐标小于-1,
    ∴-2<m<-1.
    故选A.

    考点:1.二次函数的图象;2.反比例函数的图象.
    2、D
    【解析】
    依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
    【详解】
    解:∵∠ACD是△ABC的外角,
    ∴∠ACD=∠BAC+∠B,
    ∵CE平分∠DCA,
    ∴∠ACD=2∠ACE,
    ∴2∠ACE=∠BAC+∠B,故A选项正确;
    ∵EF∥BC,CF平分∠BCA,
    ∴∠BCF=∠CFE,∠BCF=∠ACF,
    ∴∠ACF=∠EFC,
    ∴OF=OC,
    同理可得OE=OC,
    ∴EF=2OC,故B选项正确;
    ∵CF平分∠BCA,CE平分∠ACD,
    ∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
    ∵O不一定是AC的中点,
    ∴四边形AECF不一定是平行四边形,
    ∴四边形AFCE不一定是矩形,故D选项错误,
    故选D.

    【点睛】
    本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
    3、B
    【解析】
    分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
    详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
    设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
    在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
    点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
    4、C
    【解析】
    试题解析:∵
    ∴的值是3
    故选C.
    5、D
    【解析】
    根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
    【详解】
    解:把x=4代入方程,得

    解得a=1.
    经检验,a=1是原方程的解
    故选D.
    点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
    6、A
    【解析】向左平移一个单位长度后解析式为:y=x+1.
    故选A.
    点睛:掌握一次函数的平移.
    7、D
    【解析】
    分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.
    详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.
    故选:D.
    点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.
    8、A
    【解析】
    分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.
    详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
    ∴△=(-2)2-4m>0,
    ∴m<3,
    故选A.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
    9、A
    【解析】
    作于利用直角三角形30度角的性质即可解决问题.
    【详解】
    解:作于H.

    垂直平分线段AB,






    ,,

    故选A.
    【点睛】
    本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    10、D
    【解析】
    根据有理数的乘法法则进行计算即可.
    【详解】

    故选:D.
    【点睛】
    考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.

    二、填空题(共7小题,每小题3分,满分21分)
    11、8
    【解析】
    试题解析:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
    ∴∠BAF=∠DAF,
    ∵AB∥DF,
    ∴∠BAF=∠F,
    ∴∠F=∠DAF,
    ∴△ADF是等腰三角形,AD=DF=9;
    ∵AD∥BC,
    ∴△EFC是等腰三角形,且FC=CE.
    ∴EC=FC=9-6=3,
    ∴AB=BE.
    ∴在△ABG中,BG⊥AE,AB=6,BG=4
    可得:AG=2,
    又∵BG⊥AE,
    ∴AE=2AG=4,
    ∴△ABE的周长等于16,
    又∵▱ABCD,
    ∴△CEF∽△BEA,相似比为1:2,
    ∴△CEF的周长为8
    12、-1
    【解析】
    根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
    【详解】
    解:∵方程3x1-5x+1=0的一个根是a,
    ∴3a1-5a+1=0,
    ∴3a1-5a=-1,
    ∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
    故答案是:-1.
    【点睛】
    此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
    13、1
    【解析】
    根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
    【详解】
    解:由题意可得,
    a1=52+1=26,
    a2=(2+6)2+1=65,
    a3=(6+5)2+1=1,
    a4=(1+2+2)2+1=26,

    ∴2019÷3=673,
    ∴a2019= a3=1,
    故答案为:1.
    【点睛】
    本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
    14、4
    【解析】
    利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.
    【详解】
    把点(2,m)代入反比例函数和正比例函数中得,,,则.
    【点睛】
    本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.
    15、1
    【解析】
    利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
    【详解】
    解:设AF=a(a<2),则F(a,2),E(2,a),
    ∴FD=DE=2−a,
    ∴S△DEF=DF•DE==,
    解得a=或a=(不合题意,舍去),
    ∴F(,2),
    把点F(,2)代入
    解得:k=1,
    故答案为1.
    【点睛】
    本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
    16、4
    【解析】
    当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.
    【详解】

    当CD∥AB时,PM长最大,连接OM,OC,
    ∵CD∥AB,CP⊥CD,
    ∴CP⊥AB,
    ∵M为CD中点,OM过O,
    ∴OM⊥CD,
    ∴∠OMC=∠PCD=∠CPO=90°,
    ∴四边形CPOM是矩形,
    ∴PM=OC,
    ∵⊙O直径AB=8,
    ∴半径OC=4,
    即PM=4.
    【点睛】
    本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
    17、-5
    【解析】
    两边同时乘以(x+3)(x-3),得
    6-x2+9=-x2-3x,
    解得:x=-5,
    检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,
    故答案为:-5.
    【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.

    三、解答题(共7小题,满分69分)
    18、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).
    【解析】
    试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
    试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
    ②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.
    (2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
    (3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.

    考点:四边形综合题.
    19、见解析
    【解析】
    (1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
    (2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
    【详解】
    解:(1)证明:在△AEO与△BFO中,
    ∵Rt△OAB与Rt△EOF等腰直角三角形,
    ∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
    ∴△AEO≌△BFO,
    ∴AE=BF;
    ( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO

    由(1)知:∠OAC=∠OBF,
    ∴∠BDA=∠AOB=90°,
    ∴AE⊥BF.
    20、1
    【解析】
    直接利用绝对值的性质以及二次根式的性质分别化简得出答案.
    【详解】
    原式=﹣1﹣4÷+27
    =﹣1﹣16+27
    =1.
    【点睛】
    本题考查了实数的运算,解题的关键是熟练掌握运算顺序.
    21、(1)作图见解析;(2)作图见解析;(3)P(,0).
    【解析】
    (1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.
    【详解】
    解:(1)如图所示,△A1B1C1为所求做的三角形;
    (2)如图所示,△A2B2O为所求做的三角形;
    (3)∵A2坐标为(3,1),A3坐标为(4,﹣4),
    ∴A2A3所在直线的解析式为:y=﹣5x+16,
    令y=0,则x=,
    ∴P点的坐标(,0).

    考点:平移变换;旋转变换;轴对称-最短路线问题.
    22、215.6米.
    【解析】
    过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,
    根据Rt△ACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.
    【详解】
    解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点
    在Rt△ACM中,∵,
    ∴AM=CM=200米,
    又∵CD=300米,所以米,
    在Rt△BDN中,∠BDF=60°,BN=200米
    ∴米,
    ∴米
    即A,B两点之间的距离约为215.6米.
    【点睛】
    本题主要考查三角函数,正确做辅助线是解题的关键.
    23、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.
    【解析】
    (1)应用待定系数法求解析式;
    (1)设出点T坐标,表示△TAC三边,进行分类讨论;
    (3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.
    【详解】
    解:(1)由已知,c=,
    将B(1,0)代入,得:a﹣=0,
    解得a=﹣,
    抛物线解析式为y1=x1- x+,
    ∵抛物线y1平移后得到y1,且顶点为B(1,0),
    ∴y1=﹣(x﹣1)1,
    即y1=-x1+ x-;
    (1)存在,
    如图1:

    抛物线y1的对称轴l为x=1,设T(1,t),
    已知A(﹣3,0),C(0,),
    过点T作TE⊥y轴于E,则
    TC1=TE1+CE1=11+()1=t1﹣t+,
    TA1=TB1+AB1=(1+3)1+t1=t1+16,
    AC1=,
    当TC=AC时,t1﹣t+=,
    解得:t1=,t1=;
    当TA=AC时,t1+16=,无解;
    当TA=TC时,t1﹣t+=t1+16,
    解得t3=﹣;
    当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;
    (3)如图1:

    设P(m,),则Q(m,),
    ∵Q、R关于x=1对称
    ∴R(1﹣m,),
    ①当点P在直线l左侧时,
    PQ=1﹣m,QR=1﹣1m,
    ∵△PQR与△AMG全等,
    ∴当PQ=GM且QR=AM时,m=0,
    ∴P(0,),即点P、C重合,
    ∴R(1,﹣),
    由此求直线PR解析式为y=﹣x+,
    当PQ=AM且QR=GM时,无解;
    ②当点P在直线l右侧时,
    同理:PQ=m﹣1,QR=1m﹣1,
    则P(1,﹣),R(0,﹣),
    PQ解析式为:y=﹣;
    ∴PR解析式为:y=﹣x+或y=﹣.
    【点睛】
    本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.
    24、(1) 2x 50-x
    (2)每件商品降价20元,商场日盈利可达2100元.
    【解析】
    (1) 2x 50-x.
    (2)解:由题意,得(30+2x)(50-x)=2 100
    解之得x1=15,x2=20.
    ∵该商场为尽快减少库存,降价越多越吸引顾客.
    ∴x=20.
    答:每件商品降价20元,商场日盈利可达2 100元.

    相关试卷

    2022年湖南省长沙市望城区中考一模数学试卷(含解析): 这是一份2022年湖南省长沙市望城区中考一模数学试卷(含解析),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    湖南省衡阳市蒸湘区2021-2022学年中考猜题数学试卷含解析: 这是一份湖南省衡阳市蒸湘区2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了下列计算,结果等于a4的是,某种圆形合金板材的成本y,比较4,,的大小,正确的是,|﹣3|的值是等内容,欢迎下载使用。

    2022年湖南省益阳市中考猜题数学试卷含解析: 这是一份2022年湖南省益阳市中考猜题数学试卷含解析,共22页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map