|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖北省武汉市新观察重点达标名校中考数学模拟试题含解析
    立即下载
    加入资料篮
    2022年湖北省武汉市新观察重点达标名校中考数学模拟试题含解析01
    2022年湖北省武汉市新观察重点达标名校中考数学模拟试题含解析02
    2022年湖北省武汉市新观察重点达标名校中考数学模拟试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省武汉市新观察重点达标名校中考数学模拟试题含解析

    展开
    这是一份2022年湖北省武汉市新观察重点达标名校中考数学模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,计算等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
    的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
    如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是( )

    A.①②③ B.仅有①② C.仅有①③ D.仅有②③
    2.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是(  )

    A. B.
    C. D.
    3.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是(   ).

    A.36° B.54° C.72° D.30°
    4.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    5.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    6.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    7.计算(﹣ab2)3的结果是(  )
    A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
    8.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
    A. B. C.. D.
    9.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子(  )
    A.1颗 B.2颗 C.3颗 D.4颗
    10.关于反比例函数y=,下列说法中错误的是(  )
    A.它的图象是双曲线
    B.它的图象在第一、三象限
    C.y的值随x的值增大而减小
    D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 .

    12.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=_______.

    13.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.
    14.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.

    15.若式子有意义,则x的取值范围是______.
    16.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.
    三、解答题(共8题,共72分)
    17.(8分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.

    (1)求证:BE=DF;
    (2)当t=   秒时,DF的长度有最小值,最小值等于   ;
    (3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
    18.(8分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.

    19.(8分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.
    (1)求a和k的值;
    (2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.

    20.(8分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
    (1)求抛物线的解析式及点D的坐标;
    (2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
    (3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.

    21.(8分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.

    (1)求证:四边形ENFM为平行四边形;
    (2)当四边形ENFM为矩形时,求证:BE=BN.
    22.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.

    队别
    平均分
    中位数
    方差
    合格率
    优秀率
    七年级
    6.7
    m
    3.41
    90%
    n
    八年级
    7.1
    7.5
    1.69
    80%
    10%
    (1)请依据图表中的数据,求a、b的值;
    (2)直接写出表中的m、n的值;
    (3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
    23.(12分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
    24.如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
    求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.
    ∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.
    ∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.
    ∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m. 因此②正确.
    ∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s. 因此③正确.
    终上所述,①②③结论皆正确.故选A.
    2、D
    【解析】
    摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.
    【详解】
    解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,
    ∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.
    故选D.
    【点睛】
    本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.
    3、A
    【解析】
    由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.
    【详解】
    解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.
    又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.
    故选A.
    【点睛】
    本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.
    4、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    5、B
    【解析】
    试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴b>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2﹣4ac>0,
    而a<0,
    ∴<0,所以②错误;
    ∵C(0,c),OA=OC,
    ∴A(﹣c,0),
    把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
    ∴ac﹣b+1=0,所以③正确;
    设A(x1,0),B(x2,0),
    ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
    ∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
    ∴x1•x2=,
    ∴OA•OB=﹣,所以④正确.
    故选B.
    考点:二次函数图象与系数的关系.
    6、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.
    7、D
    【解析】
    根据积的乘方与幂的乘方计算可得.
    【详解】
    解:(﹣ab2)3=﹣a3b6,
    故选D.
    【点睛】
    本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
    法则.
    8、B
    【解析】
    试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:
    A、不是轴对称图形,是中心对称图形,不符合题意;
    B、是轴对称图形,也是中心对称图形,符合题意;
    C、不是轴对称图形,也不是中心对称图形,不符合题意;
    D、是轴对称图形,不是中心对称图形,不符合题意.
    故选B.
    考点:轴对称图形和中心对称图形
    9、B
    【解析】
    试题解析:由题意得,
    解得:.
    故选B.
    10、C
    【解析】
    根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
    【详解】
    A.反比例函数的图像是双曲线,正确;
    B.k=2>0,图象位于一、三象限,正确;
    C.在每一象限内,y的值随x的增大而减小,错误;
    D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
    故选C.
    【点睛】
    本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    ∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。
    ∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。
    又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°。
    ∴Rt△DBE中,BE=2DE=2。
    12、
    【解析】
    过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合△BGD∽△BEF即可.
    【详解】

    过点E作EF⊥BC交BC于点F.
    ∵AB=AC, AD为BC的中线 ∴AD⊥BC ∴EF为△ADC的中位线.
    又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2
    ∴BF=6
    ∴在Rt△BEF中BE==,
    又∵△BGD∽△BEF
    ∴,即BG=.
    GE=BE-BG=
    故答案为.
    【点睛】
    本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.
    13、1
    【解析】
    根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.
    【详解】
    ∵数据x1,x2,x3,x4,x5的平均数是3,
    ∴x1+x2+x3+x4+x5=15,
    则新数据的平均数为=1,
    故答案为:1.
    【点睛】
    本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.
    14、1
    【解析】
    根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得点G到EF的距离为 sin45°,根据平行四边形的面积即可求解.
    【详解】
    由七巧板性质可知,BI=IC=CH=HE.
    又∵S△BIC=1,∠BIC=90°,
    ∴BI•IC=1,
    ∴BI=IC=,
    ∴BC==1,
    ∵EF=BC=1,FG=EH=BI=,
    ∴点G到EF的距离为:,
    ∴平行四边形EFGH的面积=EF•
    =1×=1.
    故答案为1
    【点睛】
    本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.
    15、x>.
    【解析】
    解:依题意得:2x+3>1.解得x>.故答案为x>.
    16、5
    【解析】
    根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.
    【详解】
    解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
    所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
    则=,解得x=3,
    所以另一段长为18-3=15,
    因为15÷3=5,所以是第5张.
    故答案为:5.
    【点睛】
    本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.

    三、解答题(共8题,共72分)
    17、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形
    【解析】
    (1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;
    (2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
    (3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
    ②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.
    【详解】
    (1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
    ∴∠DCF=∠BCE,
    ∵四边形ABCD是菱形,
    ∴DC=BC,
    在△DCF和△BCE中,
    ,
    ∴△DCF≌△BCE(SAS),
    ∴DF=BE;
    (2)如图1,作BE′⊥DA交DA的延长线于E′.

    当点E运动至点E′时,DF=BE′,此时DF最小,
    在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,
    ∴设AE′=x,则BE′=2x,
    ∴AB=x=6,x=6,
    则AE′=6
    ∴DE′=6+6,DF=BE′=12,
    时间t=6+6,
    故答案为:6+6,12;
    (3)∵CE=CF,
    ∴∠CEQ<90°,
    ①当∠EQP=90°时,如图2①,

    ∵∠ECF=∠BCD,BC=DC,EC=FC,
    ∴∠CBD=∠CEF,
    ∵∠BPC=∠EPQ,
    ∴∠BCP=∠EQP=90°,
    ∵AB=CD=6,tan∠ABC=tan∠ADC=2,
    ∴DE=6,
    ∴t=6秒;
    ②当∠EPQ=90°时,如图2②,

    ∵菱形ABCD的对角线AC⊥BD,
    ∴EC与AC重合,
    ∴DE=6,
    ∴t=6秒,
    综上所述,t=6秒或6秒时,△EPQ是直角三角形.
    【点睛】
    此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.
    18、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
    【解析】
    (1)根据图形平移的性质画出平移后的△DEC即可;
    (2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
    【详解】
    (1)如图所示;

    (2)四边形OCED是菱形.
    理由:∵△DEC由△AOB平移而成,
    ∴AC∥DE,BD∥CE,OA=DE,OB=CE,
    ∴四边形OCED是平行四边形.
    ∵四边形ABCD是矩形,
    ∴OA=OB,
    ∴DE=CE,
    ∴四边形OCED是菱形.
    【点睛】
    本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
    19、(1)a=2,k=8(2) =1.
    【解析】
    分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;
    (2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.
    详解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),
    ∴a=﹣=2,
    ∴A(﹣1,2),
    过A作AE⊥x轴于E,BF⊥⊥x轴于F,
    ∴AE=2,OE=1,
    ∵AB∥x轴,
    ∴BF=2,
    ∵∠AOB=90°,
    ∴∠EAO+∠AOE=∠AOE+∠BOF=90°,
    ∴∠EAO=∠BOF,
    ∴△AEO∽△OFB,
    ∴,
    ∴OF=4,
    ∴B(4,2),
    ∴k=4×2=8;
    (2)∵直线OA过A(﹣1,2),
    ∴直线AO的解析式为y=﹣2x,
    ∵MN∥OA,
    ∴设直线MN的解析式为y=﹣2x+b,
    ∴2=﹣2×4+b,
    ∴b=10,
    ∴直线MN的解析式为y=﹣2x+10,
    ∵直线MN交x轴于点M,交y轴于点N,
    ∴M(5,0),N(0,10),
    解得,,
    ∴C(1,8),
    ∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.

    点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.
    20、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
    【解析】
    分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
    详解:
    (1)∵OB=OC=1,
    ∴B(1,0),C(0,-1).
    ∴,
    解得,
    ∴抛物线的解析式为.
    ∵=,
    ∴点D的坐标为(2,-8).

    (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
    ∵∠FAB=∠EDB,
    ∴tan∠FAG=tan∠BDE,
    即,
    解得,(舍去).
    当x=7时,y=,
    ∴点F的坐标为(7,).
    当点F在x轴下方时,设同理求得点F的坐标为(5,).
    综上所述,点F的坐标为(7,)或(5,).
    (3)∵点P在x轴上,

    ∴根据菱形的对称性可知点P的坐标为(2,0).
    如图,当MN在x轴上方时,设T为菱形对角线的交点.
    ∵PQ=MN,
    ∴MT=2PT.
    设TP=n,则MT=2n. ∴M(2+2n,n).
    ∵点M在抛物线上,
    ∴,即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    当MN在x轴下方时,设TP=n,得M(2+2n,-n).
    ∵点M在抛物线上,
    ∴,
    即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    综上所述,菱形对角线MN的长为或.
    点睛:
    1.求二次函数的解析式
    (1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
    (2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
    2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
    21、(1)证明见解析;(2)证明见解析.
    【解析】
    分析:
    (1)由已知条件易得∠EAG=∠FCG,AG=GC结合∠AGE=∠FGC可得△EAG≌△FCG,从而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;
    (2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,则∠BAC=∠ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.
    详解:
    (1)∵四边形ABCD为平行四四边形边形,
    ∴AB//CD.
    ∴∠EAG=∠FCG.
    ∵点G为对角线AC的中点,
    ∴AG=GC.
    ∵∠AGE=∠FGC,
    ∴△EAG≌△FCG.
    ∴EG=FG.
    同理MG=NG.
    ∴四边形ENFM为平行四边形.
    (2)∵四边形ENFM为矩形,
    ∴EF=MN,且EG=,GN=,
    ∴EG=NG,
    又∵AG=CG,∠AGE=∠CGN,
    ∴△EAG≌△NCG,
    ∴∠BAC=∠ACB ,AE=CN,
    ∴AB=BC,
    ∴AB-AE=CB-CN,
    ∴BE=BN.

    点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.
    22、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.
    【解析】
    试题分析:(1)根据题中数据求出a与b的值即可;
    (2)根据(1)a与b的值,确定出m与n的值即可;
    (3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.
    试题解析:(1)根据题意得:
    解得a=5,b=1;
    (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;
    优秀率为=20%,即n=20%;
    (3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,
    故八年级队比七年级队成绩好.
    考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.
    23、(1)见解析
    (2)图中阴影部分的面积为π.
    【解析】
    (1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
    (2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
    【详解】
    (1)证明:连接OC.

    ∵AC=CD,∠ACD=120°,
    ∴∠A=∠D=30°.
    ∵OA=OC,
    ∴∠2=∠A=30°.
    ∴∠OCD=∠ACD-∠2=90°,
    即OC⊥CD,
    ∴CD是⊙O的切线;
    (2)解:∠1=∠2+∠A=60°.
    ∴S扇形BOC==.
    在Rt△OCD中,∠D=30°,
    ∴OD=2OC=4,
    ∴CD==.
    ∴SRt△OCD=OC×CD=×2×=.
    ∴图中阴影部分的面积为:-.
    24、(1)证明见解析;(2)
    【解析】
    (1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
    【详解】
    (1)连接
    ∵平分,
    ∴,
    ∵ ,
    ∴,
    ∴,
    ∴OD//AC,
    ∴,

    又是的半径,
    ∴是的切线
    (2)由题意得
    ∵是弧的中点
    ∴弧弧

    ∴弧弧
    ∴弧弧弧

    在中


    .

    【点睛】
    本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.

    相关试卷

    湖北省武汉市黄陂区重点达标名校2021-2022学年中考数学模拟试题含解析: 这是一份湖北省武汉市黄陂区重点达标名校2021-2022学年中考数学模拟试题含解析,共19页。试卷主要包含了若二次函数的图象经过点等内容,欢迎下载使用。

    湖北省武汉市新观察2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省武汉市新观察2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    湖北省武汉市市新观察市级名校2022年中考数学模拟预测题含解析: 这是一份湖北省武汉市市新观察市级名校2022年中考数学模拟预测题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map