


2022年黑龙江省哈尔滨市呼兰区重点中学中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
A. B. C. D.
2.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是( )
A.119 B.289 C.77或119 D.119或289
3.函数与在同一坐标系中的大致图象是( )
A、 B、 C、 D、
4.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是
A.20、20 B.30、20 C.30、30 D.20、30
5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个 B.3个 C.2个 D.1个
6.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米 B.米 C.米 D.米
7.一次函数与二次函数在同一平面直角坐标系中的图像可能是( )
A. B. C. D.
8.下列图形中一定是相似形的是( )
A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
9.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
A.4.995×1011 B.49.95×1010
C.0.4995×1011 D.4.995×1010
10.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )
A.20 B.27 C.35 D.40
11.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为( )
A. B. C. D.
12.在实数π,0,,﹣4中,最大的是( )
A.π B.0 C. D.﹣4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.半径是6cm的圆内接正三角形的边长是_____cm.
14.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为 cm.
15.方程的解为__________.
16.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.
17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
18.当时,直线与抛物线有交点,则a的取值范围是_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
路程(千米)
运费(元/吨•千米)
甲库
乙库
甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
若从甲库运往A库粮食x吨,
(1)填空(用含x的代数式表示):
①从甲库运往B库粮食 吨;
②从乙库运往A库粮食 吨;
③从乙库运往B库粮食 吨;
(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
20.(6分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)
21.(6分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
(1)求证:四边形AGDH为菱形;
(2)若EF=y,求y关于x的函数关系式;
(3)连结OF,CG.
①若△AOF为等腰三角形,求⊙O的面积;
②若BC=3,则CG+9=______.(直接写出答案).
22.(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
23.(8分)已知:如图,∠ABC,射线BC上一点D,
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
24.(10分)已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.
(1)求m的取值范围;
(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.
25.(10分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.
填空:______;
证明:;
当四边形ABCD的面积和的面积相等时,求点P的坐标.
26.(12分)已知.
(1)化简A;
(2)如果a,b 是方程的两个根,求A的值.
27.(12分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1.
求:(1)背水坡AB的长度.
(1)坝底BC的长度.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;
B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;
C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;
D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.
故选D.
2、D
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.
【详解】
解:①当弦AB和CD在圆心同侧时,如图1,
∵AB=24cm,CD=10cm,
∴AE=12cm,CF=5cm,
∴OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=12-5=7cm;
∴四边形ACDB的面积
②当弦AB和CD在圆心异侧时,如图2,
∵AB=24cm,CD=10cm,
∴.AE=12cm,CF=5cm,
∵OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=OF+OE=17cm.
∴四边形ACDB的面积
∴四边形ACDB的面积为119或289.
故选:D.
【点睛】
本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.
3、D.
【解析】
试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
故选D.
考点:一次函数和反比例函数的图象.
4、C
【解析】
分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.
详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.
故选C.
点睛:考查众数和中位数的概念,熟记概念是解题的关键.
5、B
【解析】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
故选:B.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
6、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
7、D
【解析】
本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.
【详解】
A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;
B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;
C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;
D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.
故选D.
【点睛】
本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.
8、B
【解析】
如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
【详解】
解:∵等边三角形的对应角相等,对应边的比相等,
∴两个等边三角形一定是相似形,
又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
故选:B.
【点睛】
本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
9、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
将499.5亿用科学记数法表示为:4.995×1.
故选D.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
试题解析:第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.
故选B.
考点:规律型:图形变化类.
11、B
【解析】
先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
【详解】
解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
故选B.
【点睛】
本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
12、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6
【解析】
根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.
【详解】
如图所示,OB=OA=6,
∵△ABC是正三角形,
由于正三角形的中心就是圆的圆心,
且正三角形三线合一,
所以BO是∠ABC的平分线;
∠OBD=60°×=30°,
BD=cos30°×6=6×=3;
根据垂径定理,BC=2×BD=6,
故答案为6.
【点睛】
本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.
14、3
【解析】
∵圆锥的母线长是5cm,侧面积是15πcm2,
∴圆锥的侧面展开扇形的弧长为:l==6π,
∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,
15、
【解析】
两边同时乘,得到整式方程,解整式方程后进行检验即可.
【详解】
解:两边同时乘,得
,
解得,
检验:当时,≠0,
所以x=1是原分式方程的根,
故答案为:x=1.
【点睛】
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
16、-1≤a≤
【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
【详解】
解:反比例函数经过点A和点C.
当反比例函数经过点A时,即=3,
解得:a=±(负根舍去);
当反比例函数经过点C时,即=3,
解得:a=1±(负根舍去),
则-1≤a≤.
故答案为: -1≤a≤.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
17、
【解析】
解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
18、
【解析】
直线与抛物线有交点,则可化为一元二次方程组利用根的判别式进行计算.
【详解】
解:法一:与抛物线有交点
则有,整理得
解得
,对称轴
法二:由题意可知,
∵抛物线的 顶点为,而
∴抛物线y的取值为
,则直线y与x轴平行,
∴要使直线与抛物线有交点,
∴抛物线y的取值为,即为a的取值范围,
∴
故答案为:
【点睛】
考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
【解析】
分析:(Ⅰ)根据题意解答即可;
(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.
详解:(Ⅰ)设从甲库运往A库粮食x吨;
①从甲库运往B库粮食(100﹣x)吨;
②从乙库运往A库粮食(1﹣x)吨;
③从乙库运往B库粮食(20+x)吨;
故答案为(100﹣x);(1﹣x);(20+x).
(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.
则,解得:0≤x≤1.
从甲库运往A库粮食x吨时,总运费为:
y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]
=﹣30x+39000;
∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).
∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.
答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.
20、(1)1.7km;(2)8.9km;
【解析】
(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
【详解】
解:(1)由题意可得,
∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
∴AO=OC•tan34°,BO=OC•tan45°,
∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
即A,B两点间的距离是1.7km;
(2)由已知可得,
∠DOC=90°,OC=5km,∠DCO=56°,
∴cos∠DCO=
即
∵sin34°=cos56°,
∴
解得,CD≈8.9
答:此时雷达站C和运载火箭D两点间的距离是8.9km.
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.
21、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
【解析】
(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
(2)只要证明△AEF∽△ACB,可得解决问题;
(3)①分三种情形分别求解即可解决问题;
②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;
【详解】
(1)证明:∵GH垂直平分线段AD,
∴HA=HD,GA=GD,
∵AB是直径,AB⊥GH,
∴EG=EH,
∴DG=DH,
∴AG=DG=DH=AH,
∴四边形AGDH是菱形.
(2)解:∵AB是直径,
∴∠ACB=90°,
∵AE⊥EF,
∴∠AEF=∠ACB=90°,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
∴,
∴,
∴y=x2(x>0).
(3)①解:如图1中,连接DF.
∵GH垂直平分线段AD,
∴FA=FD,
∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,
∴AB=,
∴⊙O的面积为π.
如图2中,当AF=AO时,
∵AB==,
∴OA=,
∵AF==,
∴=,
解得x=4(负根已经舍弃),
∴AB=,
∴⊙O的面积为8π.
如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,
∵△ACE∽△ABC,
∴AC2=AE•AB,
∴16=x•,
解得x2=2﹣2(负根已经舍弃),
∴AB2=16+4x2=8+8,
∴⊙O的面积=π••AB2=(2+2)π
综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;
②如图3中,连接CG.
∵AC=4,BC=3,∠ACB=90°,
∴AB=5,
∴OH=OA=,
∴AE=,
∴OE=OA﹣AE=1,
∴EG=EH==,
∵EF=x2=,
∴FG=﹣,AF==,AH==,
∵∠CFG=∠AFH,∠FCG=∠AHF,
∴△CFG∽△HFA,
∴,
∴,
∴CG=﹣,
∴CG+9=4.
故答案为4.
【点睛】
本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.
22、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
【解析】
(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
【点睛】
1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
23、见解析.
【解析】
根据角平分线的性质、线段的垂直平分线的性质即可解决问题.
【详解】
∵点P在∠ABC的平分线上,
∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),
∵点P在线段BD的垂直平分线上,
∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),
如图所示:
【点睛】
本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.
24、(1)且,;(2)当m=1时,方程的整数根为0和3.
【解析】
(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出的取值;
(2)根据根与系数的关系得到x1+x2=3,,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.
【详解】
解:(1)∵关于x的分式方程的根为非负数,
∴且.
又∵,且,
∴解得且.
又∵方程为一元二次方程,
∴.
综上可得:且,.
(2)∵一元二次方程有两个整数根x1、x2,m为整数,
∴x1+x2=3,,
∴为整数,∴m=1或.
又∵且,,
∴m1.
当m=1时,原方程可化为.
解得:,.
∴当m=1时,方程的整数根为0和3.
【点睛】
考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.
25、(1)1;(2)证明见解析;(1)点坐标为.
【解析】
由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;
设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出∽,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;
由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.
【详解】
解:点在反比例函数的图象,
.
故答案为:1.
证明:反比例函数解析式为,
设A点坐标为
轴于点C,轴于点D,
点坐标为,P点坐标为,C点坐标为,
,,,,
,,
.
又,
∽,
,
.
解:四边形ABCD的面积和的面积相等,
,
,
整理得:,
解得:,舍去,
点坐标为.
【点睛】
本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面积公式,找出关于a的方程.
26、(1);(2)-.
【解析】
(1)先通分,再根据同分母的分式相加减求出即可;
(2)根据根与系数的关系即可得出结论.
【详解】
(1)A=﹣
=
=;
(2)∵a,b 是方程的两个根,∴a+b=4,ab=-12,∴.
【点睛】
本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键.
27、(1)背水坡的长度为米;(1)坝底的长度为116米.
【解析】
(1)分别过点、作,垂足分别为点、,结合题意求得AM,MN,在中,得BM,再利用勾股定理即可.
(1)在中,求得CN即可得到BC.
【详解】
(1)分别过点、作,垂足分别为点、,
根据题意,可知(米),(米)
在中∵,∴(米),
∵,∴(米).
答:背水坡的长度为米.
(1)在中,,
∴(米),
∴(米)
答:坝底的长度为116米.
【点睛】
本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.
黑龙江省黑河市重点中学2021-2022学年中考猜题数学试卷含解析: 这是一份黑龙江省黑河市重点中学2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2022年广东韶关曲江重点中学中考猜题数学试卷含解析: 这是一份2022年广东韶关曲江重点中学中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,a的倒数是3,则a的值是等内容,欢迎下载使用。
2022届鹤岗市重点中学中考猜题数学试卷含解析: 这是一份2022届鹤岗市重点中学中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中必然发生的事件是,下列运算正确的是等内容,欢迎下载使用。