|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年贵州省都匀市第六中学市级名校中考联考数学试题含解析
    立即下载
    加入资料篮
    2022年贵州省都匀市第六中学市级名校中考联考数学试题含解析01
    2022年贵州省都匀市第六中学市级名校中考联考数学试题含解析02
    2022年贵州省都匀市第六中学市级名校中考联考数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年贵州省都匀市第六中学市级名校中考联考数学试题含解析

    展开
    这是一份2022年贵州省都匀市第六中学市级名校中考联考数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,下列实数中,无理数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.在,0,-1,这四个数中,最小的数是( )
    A. B.0 C. D.-1
    2.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为(  )
    A.100cm B.cm C.10cm D.cm
    3.-3的相反数是(  )
    A. B.3 C. D.-3
    4.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在(  )

    A.点A B.点B C.A,B之间 D.B,C之间
    5.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(  )
    A.
    B.
    C.
    D.
    6.下列各数中,最小的数是
    A. B. C.0 D.
    7.下列实数中,无理数是(  )
    A.3.14 B.1.01001 C. D.
    8.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是(  )
    A.1 B.2 C.﹣ D.﹣
    9.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )

    A.8 B. C. D.
    10.下列图形中,既是中心对称图形又是轴对称图形的是(  )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.因式分解:_________________.
    12.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
    13.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则______.

    14.已知图中的两个三角形全等,则∠1等于____________.

    15.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.

    16.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.

    三、解答题(共8题,共72分)
    17.(8分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
    (1)A点坐标为   ;B点坐标为   ;F点坐标为   ;
    (2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
    (3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.

    18.(8分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.

    19.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
    (1)直接写出甲投放的垃圾恰好是A类的概率;
    (2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
    20.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
    求证:(1)△ABE≌△CDF;
    (2)四边形BFDE是平行四边形.
    21.(8分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
    (1)⊙O的半径为6,OP=1.
    ①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
    ②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
    (2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
    (3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.

    22.(10分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
    (1)若点A的坐标为(1,0).
    ①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
    ②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
    (2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
    23.(12分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.

    24.已知:关于x的方程x2﹣(2m+1)x+2m=0
    (1)求证:方程一定有两个实数根;
    (2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,-1,这四个数中,最小的数是-1,故选D.
    考点:正负数的大小比较.
    2、C
    【解析】
    圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.
    【详解】
    设母线长为R,则
    圆锥的侧面积==10π,
    ∴R=10cm,
    故选C.
    【点睛】
    本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.
    3、B
    【解析】
    根据相反数的定义与方法解答.
    【详解】
    解:-3的相反数为.
    故选:B.
    【点睛】
    本题考查相反数的定义与求法,熟练掌握方法是关键.
    4、A
    【解析】
    此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.
    【详解】
    解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),
    ②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),
    ③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),
    ④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,
    ⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.
    ∴该停靠点的位置应设在点A;
    故选A.
    【点睛】
    此题为数学知识的应用,考查知识点为两点之间线段最短.
    5、D
    【解析】
    根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
    【详解】
    设每枚黄金重x两,每枚白银重y两,
    由题意得:,
    故选:D.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
    6、A
    【解析】
    应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
    【详解】
    解:因为在数轴上-3在其他数的左边,所以-3最小;
    故选A.
    【点睛】
    此题考负数的大小比较,应理解数字大的负数反而小.
    7、C
    【解析】
    先把能化简的数化简,然后根据无理数的定义逐一判断即可得.
    【详解】
    A、3.14是有理数;
    B、1.01001是有理数;
    C、是无理数;
    D、是分数,为有理数;
    故选C.
    【点睛】
    本题主要考查无理数的定义,属于简单题.
    8、C
    【解析】
    试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
    故选C.
    考点:根与系数的关系
    9、D
    【解析】
    根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.
    【详解】
    ∵正方形ABCD的面积为16,正方形BPQR面积为25,
    ∴正方形ABCD的边长为4,正方形BPQR的边长为5,
    在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,
    ∵四边形ABCD是正方形,
    ∴∠A=∠D=∠BRQ=90°,
    ∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,
    ∴∠ABR=∠DRS,
    ∵∠A=∠D,
    ∴△ABR∽△DRS,
    ∴,
    ∴,
    ∴DS=,
    ∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,
    故选:D.
    【点睛】
    本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.
    10、D
    【解析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    解:A. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
    B. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;
    C. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
    D. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    提公因式法和应用公式法因式分解.
    【详解】
    解: .
    故答案为:
    【点睛】
    本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
    12、等
    【解析】
    根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.
    【详解】
    解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,
    例如:.
    【点睛】
    此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.
    13、1.
    【解析】
    根据两点间的距离公式可求m的值.
    【详解】
    依题意有,
    解得,
    故答案为:1.
    【点睛】
    考查了坐标确定位置,正确理解实际距离的定义是解题关键.
    14、58°
    【解析】

    如图,∠2=180°−50°−72°=58°,
    ∵两个三角形全等,
    ∴∠1=∠2=58°.
    故答案为58°.
    15、y=
    【解析】
    设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:
    πr2=10π
    解得:r=.
    ∵点P(3a,a)是反比例函y= (k>0)与O的一个交点,
    ∴3a2=k.

    ∴a2==4.
    ∴k=3×4=12,
    则反比例函数的解析式是:y=.
    故答案是:y=.
    点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.
    16、
    【解析】
    试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.

    考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.

    三、解答题(共8题,共72分)
    17、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
    【解析】
    (1)根据坐标轴上点的特点建立方程求解,即可得出结论;
    (2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
    (3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
    【详解】
    (1)针对于抛物线,
    令x=0,则,
    ∴,
    令y=0,则,
    解得,x=1或x=3,
    ∴,
    综上所述:,,;
    (2)由(1)知,,,
    ∵BM=FM,
    ∴,
    ∵,
    ∴直线AC的解析式为:,
    联立抛物线解析式得:,
    解得:或,
    ∴,
    如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
    ∴,
    解得:,
    ∴,
    过H作l∥AC,
    ∴直线l的解析式为,
    联立抛物线解析式,解得,
    ∴,
    即:在直线AC下方的抛物线上不存在点P,使;

    (3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
    设,,直线DE的解析式为,
    联立直线DE的解析式与抛物线解析式联立,得,
    ∴,,
    ∵DG⊥x轴,
    ∴DG∥OM,
    ∴,
    ∴,
    即,
    ∴,同理可得
    ∴,
    ∴,
    即,
    ∴,
    ∴直线DE的解析式为,
    ∴直线DE必经过一定点.

    【点睛】
    本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
    18、证明见解析.
    【解析】
    试题分析:作于点F,然后证明≌ ,从而求出所所以BM与CN的长度相等.
    试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,
    则有AB=AE=EF=FC,

    ∴∠AEM=∠FEN,
    在Rt△AME和Rt△FNE中,
    ∵E为AB的中点,
    ∴AB=CF,
    ∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,
    ∴Rt△AME≌Rt△FNE,
    ∴AM=FN,
    ∴MB=CN.

    19、(1)(2).
    【解析】
    (1)根据总共三种,A只有一种可直接求概率;
    (2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
    【详解】
    解: (1)甲投放的垃圾恰好是A类的概率是.
    (2)列出树状图如图所示:

    由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
    所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
    即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
    20、(1)见解析;(2)见解析;
    【解析】
    (1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
    (2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
    在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
    ∴△ABE≌△CDF(SAS).
    (2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
    ∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
    ∴四边形BFDE是平行四边形.
    21、(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O的“幂值”为r2﹣d2;(3)﹣3≤b≤.
    【解析】
    【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;
    ②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;
    (2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;
    (3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.
    【详解】(1)①如图1所示:连接OA、OB、OP,

    ∵OA=OB,P为AB的中点,
    ∴OP⊥AB,
    ∵在△PBO中,由勾股定理得:PB==2,
    ∴PA=PB=2,
    ∴⊙O的“幂值”=2×2=20,
    故答案为:20;
    ②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:
    如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,

    ∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,
    ∴△APA′∽△B′PB,
    ∴,
    ∴PA•PB=PA′•PB′=20,
    ∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;
    (2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,

    ∵AO=OB,PO⊥AB,
    ∴AP=PB,
    ∴点P关于⊙O的“幂值”=AP•PB=PA2,
    在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,
    ∴关于⊙O的“幂值”=r2﹣d2,
    故答案为:点P关于⊙O的“幂值”为r2﹣d2;
    (3)如图1所示:过点C作CP⊥AB,

    ∵CP⊥AB,AB的解析式为y=x+b,
    ∴直线CP的解析式为y=﹣x+.
    联立AB与CP,得,
    ∴点P的坐标为(﹣﹣b,+b),
    ∵点P关于⊙C的“幂值”为6,
    ∴r2﹣d2=6,
    ∴d2=3,即(﹣﹣b)2+(+b)2=3,
    整理得:b2+2b﹣9=0,
    解得b=﹣3或b=,
    ∴b的取值范围是﹣3≤b≤,
    故答案为:﹣3≤b≤.
    【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.
    22、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
    【解析】
    试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;
    ②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;
    (2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.
    试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
    (x﹣h)2﹣2=0,解得:h=3或h=﹣1,
    ∵点A在点B的左侧,∴h>0,∴h=3,
    ∴抛物线l的表达式为:y=(x﹣3)2﹣2,
    ∴抛物线的对称轴是:直线x=3,
    由对称性得:B(5,0),
    由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;
    ②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
    由对称性得:DF=PD,
    ∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,
    ∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,
    设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
    ∵点F、Q在抛物线l上,
    ∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,
    ∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
    解得:a=或a=0(舍),∴P(,);

    (2)当y=0时,(x﹣h)2﹣2=0,
    解得:x=h+2或h﹣2,
    ∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),
    如图3,作抛物线的对称轴交抛物线于点C,
    分两种情况:
    ①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
    则,∴3≤h≤4,
    ②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
    即:h+2≤2,h≤0,
    综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.

    考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.
    23、答案见解析
    【解析】
    试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
    试题解析:连接BD,
    ∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
    ∴MN∥BD,MN= BD,
    ∵ ,
    ∴ .
    24、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    【解析】
    试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
    (2)先讨论x1,x2的正负,再根据根与系数的关系求解.
    试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
    ∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
    故方程一定有两个实数根;
    (2)①当x1≥0,x2≥0时,即x1=x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    ②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
    ∴x1+x2=2m+1=0,
    解得:m=﹣;
    ③当x1≤0,x2≤0时,即﹣x1=﹣x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.

    相关试卷

    贵州省毕节市市级名校2021-2022学年十校联考最后数学试题含解析: 这是一份贵州省毕节市市级名校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,比较4,,的大小,正确的是等内容,欢迎下载使用。

    2022年山东东营市市级名校中考联考数学试题含解析: 这是一份2022年山东东营市市级名校中考联考数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,计算 的结果是,下面四个几何体等内容,欢迎下载使用。

    2022年贵州省都匀市第六中学中考三模数学试题含解析: 这是一份2022年贵州省都匀市第六中学中考三模数学试题含解析,共18页。试卷主要包含了如果,则a的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map