|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年山东东营市市级名校中考联考数学试题含解析
    立即下载
    加入资料篮
    2022年山东东营市市级名校中考联考数学试题含解析01
    2022年山东东营市市级名校中考联考数学试题含解析02
    2022年山东东营市市级名校中考联考数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东东营市市级名校中考联考数学试题含解析

    展开
    这是一份2022年山东东营市市级名校中考联考数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,计算 的结果是,下面四个几何体等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一元一次不等式组的解集中,整数解的个数是( )
    A.4 B.5 C.6 D.7
    2.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为(  )
    A.﹣1 B.0 C.1或﹣1 D.2或0
    3.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是(  )

    A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
    4.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为(  )

    A.125° B.135° C.145° D.155°
    5.计算 的结果是( )
    A.a2 B.-a2 C.a4 D.-a4
    6.下面四个几何体:

    其中,俯视图是四边形的几何体个数是(  )
    A.1 B.2 C.3 D.4
    7.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为(  )

    A. B. C. D.
    8.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是(  )

    A.4 B.1 C.2 D.3
    9.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是    

    A. B. C. D.
    10.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是(  )

    A. B. C. D.
    11.关于反比例函数,下列说法正确的是( )
    A.函数图像经过点(2,2); B.函数图像位于第一、三象限;
    C.当时,函数值随着的增大而增大; D.当时,.
    12.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=(  )

    A.3 B.2 C.5 D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.

    14.如果关于x的方程的两个实数根分别为x1,x2,那么的值为________________.
    15.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为_________________.

    16.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是   .
    17.一个正多边形的每个内角等于,则它的边数是____.
    18.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
    (1)在图1中证明小胖的发现;
    借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
    (2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
    (3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

    20.(6分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.

    (1)说明四边形ACEF是平行四边形;
    (2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
    21.(6分)已知,关于x的方程x2﹣mx+m2﹣1=0,
    (1)不解方程,判断此方程根的情况;
    (2)若x=2是该方程的一个根,求m的值.
    22.(8分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.

    23.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    24.(10分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:

    (1)通过取点、画图、测量,得到了x与y的几组值,如下表:
    x/cm
    1
    1.5
    2
    2.5
    3
    3.5
    4
    y/cm
    0
    3.7
    ______
    3.8
    3.3
    2.5
    ______
    (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.
    25.(10分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.
    (1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是   ;
    (2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.
    26.(12分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.

    (1)求证:BD平分∠ABC;
    (2)连接EC,若∠A=30°,DC=,求EC的长.
    27.(12分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).
    (1)求证:方程有两个不相等的实数根;
    (2)若方程的两个实数根都是整数,求k的值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.
    考点:一元一次不等式组的整数解.
    2、A
    【解析】
    把x=﹣1代入方程计算即可求出k的值.
    【详解】
    解:把x=﹣1代入方程得:1+2k+k2=0,
    解得:k=﹣1,
    故选:A.
    【点睛】
    此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    3、D
    【解析】
    根据平行线的性质以及角平分线的定义,即可得到正确的结论.
    【详解】
    解:

    ,故A选项正确;





    故B选项正确;
    平分


    ,故C选项正确;

    ,故选项错误;
    故选.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
    4、A
    【解析】
    分析:如图求出∠5即可解决问题.
    详解:

    ∵a∥b,
    ∴∠1=∠4=35°,
    ∵∠2=90°,
    ∴∠4+∠5=90°,
    ∴∠5=55°,
    ∴∠3=180°-∠5=125°,
    故选:A.
    点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.
    5、D
    【解析】
    直接利用同底数幂的乘法运算法则计算得出答案.
    【详解】
    解:,
    故选D.
    【点睛】
    此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
    6、B
    【解析】
    试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,
    故选B.
    考点:简单几何体的三视图
    7、B
    【解析】
    试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.
    故选B.
    8、D
    【解析】
    根据垂径定理,圆周角的性质定理即可作出判断.
    【详解】
    ∵P是弦AB的中点,CD是过点P的直径.
    ∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
    ∠AOB=2∠AOD=4∠ACD,故②正确.
    P是OD上的任意一点,因而④不一定正确.
    故正确的是:①②③.
    故选:D.
    【点睛】
    本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
    9、D
    【解析】
    根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
    【详解】
    ①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
    ②时,由图像可知此时,即,故②正确.
    ③由对称轴,可得,所以错误,故③错误;
    ④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
    故答案选D.
    【点睛】
    本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
    10、A
    【解析】
    利用平行线的性质以及相似三角形的性质一一判断即可.
    【详解】
    解:∵AB⊥BD,CD⊥BD,EF⊥BD,
    ∴AB∥CD∥EF
    ∴△ABE∽△DCE,
    ∴,故选项B正确,
    ∵EF∥AB,
    ∴,
    ∴,故选项C,D正确,
    故选:A.
    【点睛】
    考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    11、C
    【解析】
    直接利用反比例函数的性质分别分析得出答案.
    【详解】
    A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;
    B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;
    C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;
    D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.
    12、B
    【解析】
    以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.
    【详解】
    如图所示:

    MK=.
    故选:B.
    【点睛】
    考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、125
    【解析】
    解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
    ∵∠A=70°,∠B+∠C=180∘−∠A=110°
    ∵O在△ABC三边上截得的弦长相等,
    ∴OM=ON=OP,
    ∴O是∠B,∠C平分线的交点
    ∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.

    故答案为:125°
    【点睛】
    本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
    14、
    【解析】
    由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.
    【详解】
    ∵方程x2+kx+=0有两个实数根,
    ∴b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)2≥0,
    ∴k=3,
    代入方程得:x2+3x+=(x+)2=0,
    解得:x1=x2=-,
    则=-.
    故答案为-.
    【点睛】
    此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.
    15、-4<x<1
    【解析】
    将P(1,1)代入解析式y1=mx,先求出m的值为,将Q点纵坐标y=1代入解析式y=x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+b>mx>-1的解集为y1>y1>-1时,x的取值范围为-4<x<1.
    故答案为-4<x<1.
    点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键.
    16、6或12或1.
    【解析】
    根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.
    ∵整数k<5,∴k=4.
    ∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.
    ∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,
    ∴△ABC的边长为2、2、2或4、4、4或4、4、2.
    ∴△ABC的周长为6或12或1.
    考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.
    【详解】
    请在此输入详解!
    17、十二
    【解析】
    首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.
    【详解】
    ∵一个正多边形的每个内角为150°,
    ∴它的外角为30°,
    360°÷30°=12,
    故答案为十二.
    【点睛】
    此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.
    18、
    【解析】
    解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
    ∵当x=a时,,∴P1的坐标为(a,),
    当x=2a时,,∴P2的坐标为(2a,),
    ……
    ∴Rt△P1B1P2的面积为,
    Rt△P2B2P3的面积为,
    Rt△P3B3P4的面积为,
    ……
    ∴Rt△Pn-1Bn-1Pn的面积为.
    故答案为:

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)证明见解析;(3)∠EAF =m°.
    【解析】
    分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
    (2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.
    详(1)证明:如图1中,

    ∵∠BAC=∠DAE,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC,
    ∴BD=EC.
    (2)证明:如图2中,延长DC到E,使得DB=DE.

    ∵DB=DE,∠BDC=60°,
    ∴△BDE是等边三角形,
    ∴∠BD=BE,∠DBE=∠ABC=60°,
    ∴∠ABD=∠CBE,
    ∵AB=BC,
    ∴△ABD≌△CBE,
    ∴AD=EC,
    ∴BD=DE=DC+CE=DC+AD.
    ∴AD+CD=BD.
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.

    由(1)可知△EAB≌△GAC,
    ∴∠1=∠2,BE=CG,
    ∵BD=DC,∠BDE=∠CDM,DE=DM,
    ∴△EDB≌△MDC,
    ∴EM=CM=CG,∠EBC=∠MCD,
    ∵∠EBC=∠ACF,
    ∴∠MCD=∠ACF,
    ∴∠FCM=∠ACB=∠ABC,
    ∴∠1=3=∠2,
    ∴∠FCG=∠ACB=∠MCF,
    ∵CF=CF,CG=CM,
    ∴△CFG≌△CFM,
    ∴FG=FM,
    ∵ED=DM,DF⊥EM,
    ∴FE=FM=FG,
    ∵AE=AG,AF=AF,
    ∴△AFE≌△AFG,
    ∴∠EAF=∠FAG=m°.
    点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
    20、(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.
    【解析】
    试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;
    (2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.
    (1)证明:由题意知∠FDC=∠DCA=90°,
    ∴EF∥CA,
    ∴∠FEA=∠CAE,
    ∵AF=CE=AE,
    ∴∠F=∠FEA=∠CAE=∠ECA.
    在△AEC和△EAF中,

    ∴△EAF≌△AEC(AAS),
    ∴EF=CA,
    ∴四边形ACEF是平行四边形.
    (2)解:当∠B=30°时,四边形ACEF是菱形.
    理由如下:∵∠B=30°,∠ACB=90°,
    ∴AC=AB,
    ∵DE垂直平分BC,
    ∴∠BDE=90°
    ∴∠BDE=∠ACB
    ∴ED∥AC
    又∵BD=DC
    ∴DE是△ABC的中位线,
    ∴E是AB的中点,
    ∴BE=CE=AE,
    又∵AE=CE,
    ∴AE=CE=AB,
    又∵AC=AB,
    ∴AC=CE,
    ∴四边形ACEF是菱形.

    考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.
    21、(1)证明见解析;(2)m=2或m=1.
    【解析】
    (1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
    (2)将x=2代入方程得到关于m的方程,解之可得.
    【详解】
    (1)∵△=(﹣m)2﹣4×1×(m2﹣1)
    =m2﹣m2+4
    =4>0,
    ∴方程有两个不相等的实数根;
    (2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
    整理,得:m2﹣8m+12=0,
    解得:m=2或m=1.
    【点睛】
    本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
    22、证明见解析.
    【解析】
    过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证.
    【详解】

    证明:如图,过点B作BF⊥CE于F,
    ∵CE⊥AD,
    ∴∠D+∠DCE=90°,
    ∵∠BCD=90°,
    ∴∠BCF+∠DCE=90°
    ∴∠BCF=∠D,
    在△BCF和△CDE中,

    ∴△BCF≌△CDE(AAS),
    ∴BF=CE,
    又∵∠A=90°,CE⊥AD,BF⊥CE,
    ∴四边形AEFB是矩形,
    ∴AE=BF,
    ∴AE=CE.
    23、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    24、(1)4,1;(2)见解析;(3)1.1或3.2
    【解析】
    (1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.
    (2)利用描点法画出函数图象即可;
    (3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;
    【详解】
    (1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,
    当x=4时,点P与B重合,此时BQ=1.
    故答案为4,1.
    (2)函数图象如图所示:

    (3)如图,

    在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,
    ∴∠BMQ=31°,
    ∴BQ=BM=2,
    观察图象可知y=2时,对应的x的值为1.1或3.2.
    故答案为1.1或3.2.
    【点睛】
    本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.
    25、(1);(2)
    【解析】
    (1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;
    (2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.
    【详解】
    解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,
    ∴甲投放了一袋是餐厨垃圾的概率是,
    故答案为:;
    (2)记这四类垃圾分别为A、B、C、D,
    画树状图如下:

    由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,
    所以投放的两袋垃圾同类的概率为=.
    【点睛】
    本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    26、(1)见解析;(2).
    【解析】
    (1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;
    (2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.
    【详解】
    (1)证明:∵AD⊥DB,点E为AB的中点,
    ∴.
    ∴∠1=∠2.
    ∵DE∥BC,
    ∴∠2=∠3.
    ∴∠1=∠3.
    ∴BD平分∠ABC.
    (2)解:∵AD⊥DB,∠A=30°,
    ∴∠1=60°.
    ∴∠3=∠2=60°.
    ∵∠BCD=90°,
    ∴∠4=30°.
    ∴∠CDE=∠2+∠4=90°.
    在Rt△BCD中,∠3=60°,,
    ∴DB=2.
    ∵DE=BE,∠1=60°,
    ∴DE=DB=2.
    ∴.

    【点睛】
    此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.
    27、(3)证明见解析(3)3或﹣3
    【解析】
    (3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.
    【详解】
    证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.
    ∵k为整数,
    ∴(3k﹣3)3>2,即△>2.
    ∴方程有两个不相等的实数根.
    (3)解:∵方程kx3﹣(4k+3)x+3k+3=2为一元二次方程,
    ∴k≠2.
    ∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,
    ∴x3=3,.
    ∵方程的两个实数根都是整数,且k为整数,
    ∴k=3或﹣3.
    【点睛】
    本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.

    相关试卷

    山东省东营市四校连赛市级名校2022年中考联考数学试题含解析: 这是一份山东省东营市四校连赛市级名校2022年中考联考数学试题含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    山东东营市市级名校2022年中考冲刺卷数学试题含解析: 这是一份山东东营市市级名校2022年中考冲刺卷数学试题含解析,共21页。试卷主要包含了运用乘法公式计算等内容,欢迎下载使用。

    山东东营市市级名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份山东东营市市级名校2021-2022学年中考数学适应性模拟试题含解析,共20页。试卷主要包含了下列各数中是无理数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map