年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    贵州省从江县市级名校2022年中考适应性考试数学试题含解析

    贵州省从江县市级名校2022年中考适应性考试数学试题含解析第1页
    贵州省从江县市级名校2022年中考适应性考试数学试题含解析第2页
    贵州省从江县市级名校2022年中考适应性考试数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省从江县市级名校2022年中考适应性考试数学试题含解析

    展开

    这是一份贵州省从江县市级名校2022年中考适应性考试数学试题含解析,共21页。试卷主要包含了计算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是(  )
    A.y=(x﹣2)2+1 B.y=(x+2)2+1
    C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
    2.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是(  )

    A.红花、绿花种植面积一定相等
    B.紫花、橙花种植面积一定相等
    C.红花、蓝花种植面积一定相等
    D.蓝花、黄花种植面积一定相等
    3.在数轴上表示不等式组的解集,正确的是(  )
    A. B.
    C. D.
    4.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )

    A. B. C. D.
    5.如图所示几何体的主视图是( )

    A. B. C. D.
    6.计算:的结果是( )
    A. B.. C. D.
    7.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是(  )

    A.3m B. m C. m D.4m
    8.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
    A. B. C. D.
    9.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
    ①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是(  )

    A.2 B.3 C.4 D.5
    10.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为(  )

    A.70° B.80° C.90° D.100°
    二、填空题(共7小题,每小题3分,满分21分)
    11.若点A(1,m)在反比例函数y=的图象上,则m的值为________.
    12.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)
    13.将一副三角板如图放置,若,则的大小为______.

    14.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.

    15.计算:(﹣)﹣2﹣2cos60°=_____.
    16.计算(+)(-)的结果等于________.
    17.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.

    三、解答题(共7小题,满分69分)
    18.(10分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
    若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.
    19.(5分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).
    (1)求平移后的抛物线的表达式.
    (2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?
    (3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.

    20.(8分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
    (1)请写出两个“关于轴对称的二次函数”;
    (2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
    21.(10分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)

    22.(10分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
    23.(12分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.
    (1)求证:四边形BCFE是平行四边形;
    (2)当∠ACB=60°时,求证:四边形BCFE是菱形.

    24.(14分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
    考点:二次函数的顶点式、对称轴
    点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
    2、C
    【解析】
    图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
    【详解】
    解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
    故选择C.
    【点睛】
    本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
    3、C
    【解析】
    解不等式组,再将解集在数轴上正确表示出来即可
    【详解】
    解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集为﹣1≤x<2,故选C.
    【点睛】
    本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.
    4、A
    【解析】
    作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
    解:作AH⊥BC于H,作直径CF,连结BF,如图,

    ∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
    ∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
    ∵AH⊥BC,∴CH=BH,
    ∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
    ∴,
    ∴BC=2BH=2.
    故选A.
    “点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.
    5、C
    【解析】
    从正面看几何体,确定出主视图即可.
    【详解】
    解:几何体的主视图为

    故选C.
    【点睛】
    本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
    6、B
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    解:原式=
    =
    =
    故选;B
    【点睛】
    本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
    7、B
    【解析】
    因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
    【详解】
    解:∵sin∠CAB=
    ∴∠CAB=45°.
    ∵∠C′AC=15°,
    ∴∠C′AB′=60°.
    ∴sin60°=,
    解得:B′C′=3.
    故选:B.
    【点睛】
    此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
    8、A
    【解析】
    根据待定系数法即可求得.
    【详解】
    解:∵正比例函数y=kx的图象经过点(1,﹣3),
    ∴﹣3=k,即k=﹣3,
    ∴该正比例函数的解析式为:y=﹣3x.
    故选A.
    【点睛】
    此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    9、D
    【解析】
    ①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
    ②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
    ③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
    ④根据三角形中位线定理可作判断;
    ⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
    【详解】
    ①∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,∠ABC=∠ADC=60°,
    ∴∠DAE=∠BEA,
    ∴∠BAE=∠BEA,
    ∴AB=BE=1,
    ∴△ABE是等边三角形,
    ∴AE=BE=1,
    ∵BC=2,
    ∴EC=1,
    ∴AE=EC,
    ∴∠EAC=∠ACE,
    ∵∠AEB=∠EAC+∠ACE=60°,
    ∴∠ACE=30°,
    ∵AD∥BC,
    ∴∠CAD=∠ACE=30°,
    故①正确;
    ②∵BE=EC,OA=OC,
    ∴OE=AB=,OE∥AB,
    ∴∠EOC=∠BAC=60°+30°=90°,
    Rt△EOC中,OC=,
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠BAD=120°,
    ∴∠ACB=30°,
    ∴∠ACD=90°,
    Rt△OCD中,OD=,
    ∴BD=2OD=,故②正确;
    ③由②知:∠BAC=90°,
    ∴S▱ABCD=AB•AC,
    故③正确;
    ④由②知:OE是△ABC的中位线,
    又AB=BC,BC=AD,
    ∴OE=AB=AD,故④正确;
    ⑤∵四边形ABCD是平行四边形,
    ∴OA=OC=,
    ∴S△AOE=S△EOC=OE•OC=××,
    ∵OE∥AB,
    ∴,
    ∴,
    ∴S△AOP= S△AOE==,故⑤正确;
    本题正确的有:①②③④⑤,5个,
    故选D.
    【点睛】
    本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
    10、B
    【解析】
    首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.
    【详解】
    ∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
    ∴∠BMF=120°,∠FNB=80°,
    ∵将△BMN沿MN翻折得△FMN,
    ∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
    ∴∠F=∠B=180°-60°-40°=80°,
    故选B.
    【点睛】
    主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3
    【解析】
    试题解析:把A(1,m)代入y=得:m=3.
    所以m的值为3.
    12、(3a﹣b)
    【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).
    点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
    13、160°
    【解析】
    试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.
    解:∵∠AOD=20°,∠COD=∠AOB=90°,
    ∴∠COA=∠BOD=90°﹣20°=70°,
    ∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,
    故答案为160°.
    考点:余角和补角.
    14、4
    【解析】
    试题解析:∵ 可
    ∴设DC=3x,BD=5x,
    又∵MN是线段AB的垂直平分线,
    ∴AD=DB=5x,
    又∵AC=8cm,
    ∴3x+5x=8,
    解得,x=1,
    在Rt△BDC中,CD=3cm,DB=5cm,

    故答案为:4cm.
    15、3
    【解析】
    按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.
    【详解】
    (﹣)﹣2﹣2cos60°
    =4-2×
    =3,
    故答案为3.
    【点睛】
    本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.
    16、2
    【解析】
    利用平方差公式进行计算即可得.
    【详解】
    原式=
    =5-3=2,
    故答案为:2.
    【点睛】
    本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.
    17、
    【解析】
    分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k﹣1)=k,解方程即可.
    详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,

    则OD=MN,DN=OM,∠AMO=∠BNA=90°,
    ∴∠AOM+∠OAM=90°,
    ∵∠AOB=∠OBA=45°,
    ∴OA=BA,∠OAB=90°,
    ∴∠OAM+∠BAN=90°,
    ∴∠AOM=∠BAN,
    ∴△AOM≌△BAN,
    ∴AM=BN=1,OM=AN=k,
    ∴OD=1+k,BD=OM﹣BN=k﹣1
    ∴B(1+k,k﹣1),
    ∵双曲线y=(x>0)经过点B,
    ∴(1+k)•(k﹣1)=k,
    整理得:k2﹣k﹣1=0,
    解得:k=(负值已舍去),
    故答案为.
    点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.
    【详解】
    请在此输入详解!

    三、解答题(共7小题,满分69分)
    18、112.1
    【解析】
    试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;
    (2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.
    试题解析:解:(1)y=30﹣2x(6≤x<11).
    (2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.
    点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
    19、(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).
    【解析】
    (1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;
    (2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;
    (3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当或时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.
    【详解】
    (1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),
    ∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,
    ∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,
    ∴平移后抛物线的二次项系数为1,即a=1,
    ∴平移后抛物线的表达式为y=(x+3)(x﹣1),
    整理得:y=x2+2x﹣3;
    (2)∵y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),
    则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),
    如图1,

    连接B,C′,与直线x=﹣1的交点即为所求点P,
    由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,
    则,
    解得,
    所以点P坐标为(﹣1,﹣2);
    (3)如图2,

    由得,即D(﹣1,1),
    则DE=OD=1,
    ∴△DOE为等腰直角三角形,
    ∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,
    ∵BO=1,
    ∴BD=,
    ∵∠BOD=135°,
    ∴点M只能在点D上方,
    ∵∠BOD=∠ODM=135°,
    ∴当或时,以M、O、D为顶点的三角形△BOD相似,
    ①若,则,解得DM=2,
    此时点M坐标为(﹣1,3);
    ②若,则,解得DM=1,
    此时点M坐标为(﹣1,2);
    综上,点M坐标为(﹣1,3)或(﹣1,2).
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.
    20、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
    【解析】
    (1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
    (2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
    【详解】
    解:(1)答案不唯一,如;
    (2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
    即a=m,--=0,,
    整理得m=a,n=-b,p=c,
    则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
    ∴函数y1+y2的顶点坐标为(0,2c).
    【点睛】
    本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
    21、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    【解析】
    解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
    在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
    ∴(米).
    ∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.
    22、(1);(2).
    【解析】
    (1)直接利用概率公式计算;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.
    【详解】
    解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示
    画树状图为:

    共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,
    所以该纽能够翻译上述两种语言的概率= .
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    23、(1)见解析;(2)见解析
    【解析】
    (1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.
    (2)根据菱形的判定证明即可.
    【详解】
    (1)证明::∵D.E为AB,AC中点
    ∴DE为△ABC的中位线,DE=BC,
    ∴DE∥BC,
    即EF∥BC,
    ∵EF=BC,
    ∴四边形BCEF为平行四边形.
    (2)∵四边形BCEF为平行四边形,
    ∵∠ACB=60°,
    ∴BC=CE=BE,
    ∴四边形BCFE是菱形.

    【点睛】
    本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    24、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.
    【解析】
    试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
    试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:

    在Rt△AOB中,AB=1,OB=6,则BC=6,
    ∴∠BAO=30°,∠ABO=60°,
    又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,
    ∴BD=3,CD=3,
    所以点C的坐标为(﹣3,9);
    ②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:

    AO=1×cos∠BAO=1×cos30°=6.
    ∴A'O=6﹣x,B'O=6+x,A'B'=AB=1
    在△A'O B'中,由勾股定理得,
    (6﹣x)2+(6+x)2=12,解得:x=6(﹣1),
    ∴滑动的距离为6(﹣1);
    (2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:

    则OE=﹣x,OD=y,
    ∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
    ∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,
    ∴△ACE∽△BCD,
    ∴,即,
    ∴y=﹣x,
    OC2=x2+y2=x2+(﹣x)2=4x2,
    ∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,
    故答案为1.
    考点:相似三角形综合题.

    相关试卷

    浙江宁波鄞州区市级名校2022年中考适应性考试数学试题含解析:

    这是一份浙江宁波鄞州区市级名校2022年中考适应性考试数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,若二次函数的图象经过点等内容,欢迎下载使用。

    孝感市市级名校2021-2022学年中考适应性考试数学试题含解析:

    这是一份孝感市市级名校2021-2022学年中考适应性考试数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是,下列命题是真命题的是等内容,欢迎下载使用。

    2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析:

    这是一份2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析,共22页。试卷主要包含了老师在微信群发了这样一个图,的绝对值是,剪纸是我国传统的民间艺术等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map