2022年广东省佛山市超盈实验中学达标名校中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.在实数﹣3.5、、0、﹣4中,最小的数是( )
A.﹣3.5 B. C.0 D.﹣4
2.一个多边形的每一个外角都等于72°,这个多边形是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
3.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为( )
A.13 B.17 C.18 D.25
4.若关于的方程的两根互为倒数,则的值为( )
A. B.1 C.-1 D.0
5.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
6.浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )
A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106
7.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是( ).
A. B.
C. D.
8.在△ABC中,AB=AC=13,BC=24,则tanB等于( )
A. B. C. D.
9.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )
A. B.15 C. D.9
10.如图图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果a+b=2,那么代数式(a﹣)÷的值是______.
12.如图,若点 的坐标为 ,则 =________.
13.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
14.一组数据1,4,4,3,4,3,4的众数是_____.
15.数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________.
16.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A或B或C).
三、解答题(共8题,共72分)
17.(8分)计算.
18.(8分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?
19.(8分)问题探究
(1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;
(2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;
(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.
图3
20.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
21.(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
22.(10分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)
23.(12分)计算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.
24.观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可
【详解】
在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.
【点睛】
掌握实数比较大小的法则
2、C
【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
【详解】
360°÷72°=1,则多边形的边数是1.
故选C.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
3、C
【解析】
在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.
4、C
【解析】
根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.
【详解】
解:设、是的两根,
由题意得:,
由根与系数的关系得:,
∴k2=1,
解得k=1或−1,
∵方程有两个实数根,
则,
当k=1时,,
∴k=1不合题意,故舍去,
当k=−1时,,符合题意,
∴k=−1,
故答案为:−1.
【点睛】
本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.
5、C
【解析】
根据一元一次方程的定义即可求出答案.
【详解】
由题意可知:,解得a=−1
故选C.
【点睛】
本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.
6、B
【解析】
.
故选B.
点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
7、B
【解析】
把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.
【详解】
解:∵y=x2+2x+3=(x+1)2+2,
∴原抛物线的顶点坐标为(-1,2),
令x=0,则y=3,
∴抛物线与y轴的交点坐标为(0,3),
∵抛物线绕与y轴的交点旋转180°,
∴所得抛物线的顶点坐标为(1,4),
∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
故选:B.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.
8、B
【解析】
如图,等腰△ABC中,AB=AC=13,BC=24,
过A作AD⊥BC于D,则BD=12,
在Rt△ABD中,AB=13,BD=12,则,
AD=,
故tanB=.
故选B.
【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.
9、C
【解析】
由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.
【详解】
由折叠得到EB=EF,∠B=∠DFE,
在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,
根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,
解得:x=5,
∴EF=EB=5,CE=4,
∵FD∥BC,
∴∠DFE=∠FEC,
∴∠FEC=∠B,
∴EF∥AB,
∴,
则AB===,
故选C.
【点睛】
此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.
10、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故A不正确;
B、既是轴对称图形,又是中心对称图形,故B正确;
C、是轴对称图形,不是中心对称图形,故C不正确;
D、既不是轴对称图形,也不是中心对称图形,故D不正确.
故选B.
【点睛】
本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
分析:根据分式的运算法则即可求出答案.
详解:当a+b=2时,
原式=
=
=a+b
=2
故答案为:2
点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
12、
【解析】
根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.
【详解】
如图,由勾股定理,得:OA==1.sin∠1=,故答案为.
13、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
14、1
【解析】
本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故答案为1.
【点睛】
本题为统计题,考查了众数的定义,是基础题型.
15、
【解析】
根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得.
【详解】
解:如图示,
根据题意可得AB=6cm,
设正方体的棱长为xcm,则AC=x,BC=3x,
根据勾股定理,AB2=AC2+BC2,即,
解得
故答案为:.
【点睛】
本题考查了勾股定理的应用,正确理解题意是解题的关键.
16、A
【解析】
试题分析:由题意得:SA>SB>SC,
故落在A区域的可能性大
考点: 几何概率
三、解答题(共8题,共72分)
17、
【解析】
分析:先计算,再做除法,结果化为整式或最简分式.
详解:
.
点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.
18、(1)结果见解析;(2)不公平,理由见解析.
【解析】
判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.
19、(1);(2);(3)+.
【解析】
(1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;
(2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;
(3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.
【详解】
(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,
∴BC=3,CE=,∠ACB=∠DCE=45°,
∴∠BCE=∠ACD,
∵==,=,
∴=,∠BCE=∠ACD,
∴△ACD∽△BCE,
∴=;
(2)∵∠ACB=90°,∠B=30°,BC=4,
∴AC=,AB=2AC=,
∵∠QAP=∠QCP=90°,
∴点A,点Q,点C,点P四点共圆,
∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,
∴△ABC∽△PQC,
∴,
∴PQ=×QC=QC,
∴当QC的长度最小时,PQ的长度最小,
即当QC⊥AB时,PQ的值最小,
此时QC=2,PQ的最小值为;
(3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,
,
∵∠ADC=90°,AD=CD,
∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,
∴△ABC∽△DEC,
∴,
∵∠DCE=∠ACB,
∴∠BCE=∠ACD,
∴△BCE∽△ACD,
∴∠BEC=∠ADC=90°,
∴CE=BC=2,
∵点F是EC中点,
∴DF=EF=CE=,
∴BF==,
∴BD≤DF+BF=+
【点睛】
本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.
20、(1)35元/盒;(2)20%.
【解析】
试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.
答:2014年这种礼盒的进价是35元/盒.
(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).
根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).
答:年增长率为20%.
考点:一元二次方程的应用;分式方程的应用;增长率问题.
21、(1)10%;(1)会跌破10000元/m1.
【解析】
(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
【详解】
(1)设11、11两月平均每月降价的百分率是x,
则11月份的成交价是:14000(1-x),
11月份的成交价是:14000(1-x)1,
∴14000(1-x)1=11340,
∴(1-x)1=0.81,
∴x1=0.1=10%,x1=1.9(不合题意,舍去)
答:11、11两月平均每月降价的百分率是10%;
(1)会跌破10000元/m1.
如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
11340(1-x)1=11340×0.81=9184.5<10000,
由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
【点睛】
此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
22、(1)证明见解析;(2)9﹣3π
【解析】
试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
试题解析:(1)如图连接OD.
∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
∴CF⊥OD, ∴CF是⊙O的切线.
(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.
23、1.
【解析】
直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案.
【详解】
3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118
=3×+2﹣﹣1﹣1
=+2﹣﹣1﹣1
=1.
【点睛】
本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.
24、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
【解析】
(1)根据①②③的规律即可得出第④个等式;
(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
【详解】
(1)∵22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
∴第④个等式为52﹣2×4=42+1,
故答案为:52﹣2×4=42+1,
(2)第n个等式为(n+1)2﹣2n=n2+1.
(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
【点睛】
本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。
2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了下列计算正确的是,下列命题中,真命题是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。
2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列因式分解正确的是,计算6m3÷的结果是,3的倒数是等内容,欢迎下载使用。